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Abstract  
 
The One-commodity Pickup-and-Delivery Traveling Salesman Problem (1-PDTSP) is a variant of the Traveling Salesman 
Problem (TSP) introduced by Hernández-Pérez et Salazar-González [1]. In the 1-PDTSP, a set of customers has to be 
addressed by one vehicle initially located at the depot. Each customer is associated with a demand of the same item type. 
According to its demand, a customer can be a supplier (with pickup operation) if its demand is positive or a consumer (with 
delivery operation) otherwise. Any item picked up at a customer can be used to a delivery. The objective is to find a 
minimum cost Hamiltonian route for a capacitated vehicle. It has to perform the pickups and the deliveries at each customer 
in order to satisfy all of requests. In the real world application, the 1-PDTSP can be employed for the management of the 
public bicycle sharing systems like Vélib’ in Paris. In this paper, we propose a hybrid Iterated Local Search (ILS) / Variable 
Neighborhood Descent (VND) heuristic for the 1-PDTSP. In the ILS, an assignment model is used at first to generate a 
feasible initial solution. The same model is served then as major shaking procedure, which aims at finding a k-position 
neighbor of the incumbent solution, where k defines the maximum number of customer positions different between two 
solutions. All generated neighbor solutions using this model are stored in a vector in order to avoid the solution duplication. 
An explored neighbor solution is then improved using the improvement procedure, which combines an auxiliary shaking step 
and a VND local search with a strategy of relaxation of capacity. The proposed heuristic is tested on small and medium 
instances. The computational results show that it gives competitive results comparing with the existing heuristics. 

   
Key words: Pickup-and-Delivery Problem (PDP), Traveling Salesman Problem (TSP), 1-PDTSP, ILS, VND, heuristic.  
 

1 Introduction  

Public bicycle sharing systems like Vélo’V in Lyon (2005) and Vélib’ in Paris (2007) are now 
widespread in French cities. Their primary aim is to reduce the congestion in urban centers by 
providing a greener transportation means. Consequently, this should also reduce the chemical and 
noise pollution and improve the quality of life in city centers. Yet, those systems suffer form some 
operational issues. For instance, coherent population moves (going to work in the morning, going back 
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home at the end of the day) lead to disparities on the stations: some stations are empty at some time of 
the day while others are saturated. Moreover, stations at the most elevated parts of cities (Montmartre 
in Paris for instance) typically face a bicycle imbalance. Adjusting the pricing or improving the 
stations location can help reducing the problem, but this does not remove the need for proactive 
relocation operations. Agents use vehicles to pick bicycles form saturated stations to put them on 
empty stations. This improves the global availability of the system. Due to the size of the system, 
optimizing the availability is an important issue. 

We consider here a single agent and we model the problem as the One-Commodity Pickup-and-
Delivery Traveling Salesman Problem (1-PDTSP). It is a variant of the Traveling Salesman Problem 
(TSP) introduced by Hernández-Pérez et Salazar-González [1]. In the 1-PDTSP, a set of sites is 
considered. It consists of a group of customers and one depot. Each customer is associated with a 
request which corresponds to an items demand, positive or negative. The customers can be divided 
into two subsets according to their demands: the pickup customers provide items while delivery 
customers consume the items. Thus, there is a single homogeneous commodity, without specific 
identifications or known destination. Then, items collected at pickup customers can be delivered to 
any delivery customers. Each customer is served only once by a capacitated vehicle. The vehicle starts 
and ends its route at the depot. Moreover, the depot can provide items and the vehicle may leave the 
depot with some items. Without loss of generality, the sum of the customers’ requests is null, which 
means the vehicle must return to the depot with the same initial load. The objective is to find a 
minimum cost Hamiltonian route for the vehicle, and each customer must be visited once and its 
request must be satisfied, while respecting the vehicle capacity constraint. 

The 1-PDTSP is defined on a complete and directed graph , , where 0, . . ,  is the set 
of sites and , | , ,  is the set of arcs. The set of sites contain the depot (denoted 
by 0) and  customers (denoted by 1, . . , ). Each customer  is associated with a demand , 

0 ( 0) if  corresponds to a delivery (pickup) customer. The depot can be considered as a 
special customer by setting  ∑ \ , i.e., a customer absorbing or providing the necessary 
amount of item to ensure product conservation [1]. The capacity of vehicle is denoted by . 
Moreover, the depot can provide an additional initial amount of items  (that is not consumed by the 
customers) to the vehicle when leaving the depot, with 0 | | . Each arc ( , ) is 
associated with a non-negative cost . The objective of the 1-PDTSP is to find the minimum cost 
Hamiltonian tour considering the following constraints: 

 The route starts and ends at the depot;  
 Each customer is visited one time;  
 The vehicle load does not exceed its capacity; 
 All requests are satisfied. 

The 1-PDTSP is NP-hard (see [1]). Moreover, even finding a feasible solution may be very difficult 
when the vehicle capacity is small (close to the largest demand). According to the classification of 
Berbeglia et al. [2], the 1-PDTSP can be considered as a Pickup-and-Delivery Problem (PDP) with a 
many-to-many structure and a single type of commodity. The commodity is characterized by its 
specific feature, since any vertex can serve as a source or as a destination for each request. Recently, 
Hosny and Mumford [3] proposed to refer this class of problems as the One-Commodity Pickup and 
Delivery Problem (1-PDP). Those many-to-many problems are relevant in shared transportation 
systems since we do not need to consider each shared-vehicle separately. We focus here on the 
management of public bicycle sharing systems like Vélo’V in Lyon or Vélib’ in Paris. Thus, the 1-
PDTSP is used to model the reorganization of the bicycle availability at each location site under a 
static context. In such an application, the items are the bicycles. They all are similar and should be 
collected from some sites and delivered to others sites in order to balance the availability of each site 
of the sharing system.  

In this paper, we propose a hybrid ILS/VND heuristic to solve the 1-PDTSP. In this approach, an 
assignment model is used in the construction phase and in the major shaking step of ILS [4]. The 
integer linear programming model aims at building the feasible initial solutions in the construction 
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phase. It uses a k-position neighborhood structure to define the neighbor solutions of the incumbent 
solution whenever in shaking step. The model can be solved with any linear programming solver in a 
short computational time. All generated neighbor solutions are stored in a global vector in order to 
avoid any possible duplication during the execution. A neighbor solution is then improved using an 
improvement phase which combines an auxiliary shaking step and a VND local search [5] with several 
adaptations of classic edge-exchange operators from the TSP. Those adaptations are defined on top of 
a capacity relaxation scheme in order to be able to explore the solution space more efficiently as 
described in Hernández-Pérez et al. [6]. The proposed heuristic is tested on the small and medium 
instances introduced in Hernández-Pérez et al. [7]. 

The paper is organized as follows. Section 2 is a summary of works related to the 1-PDTSP. Section 3 
describes the proposed approach. The computational results are presented in section 4, before 
conclusions in section 5. 

2 Related Work  

Since the 1-PDTSP is a recent variation of the TSP, few articles have been published in the literature. 
Hernández-Pérez and Salazar-González presented a branch-and-cut algorithm to solve instances with 
up to 50 customers [8]. The exact algorithms are not suitable for solving large instances, but they can 
be used for providing good lower bounds.  

Then, Hernández-Pérez and Salazar-González proposed two heuristic algorithms in [9]. The first one 
is based on a greedy algorithm followed by an improvement phase using edge-exchange operators. 
Since it is difficult to generate a feasible solution when the vehicle capacity is close to the largest 
demand, they introduced the notion of infeasibility to evaluate a solution. It measures the difference 
between the vehicle capacity and the largest load during its trip. A solution  is said to be feasible 
if 0. A multi-start scheme is used in this heuristic: each iteration starts with an initial 
solution built by a nearest neighbor (NN) algorithm, which encourages the selection of edges 
connecting customers of different types by slightly penalizing the use of edges connecting same 
customer-type. The initial solution may still not to be feasible. It is then improved by a local search 
based on 2-Opt and 3-Opt edge exchanges. The second heuristic relies on a partial optimization 
strategy. It uses the same construction algorithm as before. A new neighborhood structure, called k-
neighborhood is defined, where k measures the difference in terms of edges. In order to explore the k-
neighborhood of a solution, they adapt the ILP model in [1] using an additional inequality, and then 
solve it using a branch-and-cut algorithm. Thus, the approach corresponds to a limited descent (with at 
most 6 steps) in the local branching strategy [10]. 

The same authors also propose a hybrid GRASP/VND heuristic in [6]. It combines a GRASP (Greedy 
Randomized Adaptive Search Procedure) metaheuristic with a VND (Variable Neighborhood Descent) 
local search. GRASP is based on the repetition of a greedy construction algorithm and a local search. 
VND was initially defined as the local search of VNS [5]. It relies on several pre-defined 
neighborhood operators, which are usually sorted according to their complexity. When one operator is 
not able to improve the current solution, the VND switches to the next one, otherwise it performs the 
move before resuming to the first operator. The VND stops whenever a local optimum for all the 
operators is reached. Hernández-Pérez and Salazar-González also define a second VND (with vertex-
exchange operators) in a post-optimization step. Infeasible solutions are allowed in the GRASP/VND 
step, since its aim is to find a good feasible solution. Then the post-optimization tries to improve the 
solution computed in the first step while satisfying the vehicle capacity. 

Zhao et al. [11] have proposed a Genetic Algorithm for the 1-PDTSP. The algorithm first builds a 
population of feasible solutions using a non-deterministic nearest-neighbor construction heuristic. The 
initial population is then improved by a local search based on the 2-Opt edge-exchange operator. A 
pheromone-based crossover operator is proposed to generate new solutions. Such an idea comes from 
the ant colony algorithm, which stores pheromone trails related to arcs as global information. In order 
to generate a child solution, the pheromone-based operator first randomly selects a customer to be the 
first visited in the trip. It then iteratively appends a feasible customer taking into account its neighbors 
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in both two parents and the pheromone related to the last customer inserted. If all the neighbors have 
been already inserted or if none of them can be added to the end of the tours, a probabilistic rule is 
used to sort the non-visited customers. Then on of them is selected by considering its priority. This 
rule takes into account the pheromone on the arcs linked to the last customer of the trip. Otherwise, the 
nearest feasible neighbor is selected. The child solution has to be feasible. It is then improved by a 2-
Opt before applying the 3 vertex-exchange mutation operator. A new population is generated by 
replacing half of its solutions by the children. The pheromones are updated after each population 
generation. This algorithm works on the space of feasible solutions, and thus does not need any 
relaxation of vehicle capacity. 

More recently, Hosny et al. [3] proposed a hybrid VNS/SA (Variable Neighborhood Search/Simulated 
Annealing) for solving the 1-PDTSP. Their idea is to use a SA acceptation criterion when a local 
optimum explored during the VNS is worse than the current solution. This criterion allows local 
search to escape from a local optimum besides the original VNS shaking mechanism. The proposed 
algorithm uses an iterative scheme. Each iteration starts with the incumbent solution obtained in the 
previous iterations. The maximum neighborhood size is not fixed and it depends on the current 
iteration number. Actually it is gradually reduced during the iterations: early iterations use large 
neighborhood sizes, which allows wider jumps in the solution space (from the current solution); later 
iterations only allow limited explorations in the search space, in order to maintain the solution quality. 
Moreover, they use a variation of the construction algorithm proposed by [11]. The infeasible solutions 
are allowed both in the construction phase and in the local search.   

3 The proposed approach for the 1-PDTSP  

The approach we propose uses a hybrid ILS/VND scheme, which contains an assignment model and 
an improvement procedure. The assignment model is used firstly to generate a feasible initial solution 
in the construction step. It is served then as major shaking step, which aims at finding a k-position 
neighbor to the incumbent solution. Only feasible solutions are accepted by the assignment model. 
More detail of this model is described in the section 3.1. An accepted neighbor solution is then 
improved by a procedure combines an auxiliary shaking step and a VND local search. The 
improvement procedure relies on k-Opt edge-exchange operators and a vertex-exchange mutation 
operator (see section 3.2). It allows the relaxation of the vehicle capacity. The stopping criterion in the 
ILS is defined as a fixed number of iterations. Algorithm 1 outlines the proposed approach for the 1-
PDTSP. Each component is described in next subsections.  

Algorithm 1: Hybrid ILS/VND heuristic for the 1-PDTSP 
1 
2 
3 
4 
5 
6 
7 
8  

  Assignment_model();              // construction step
while stopping criterion is not satisfied do 
|       Assignment_model() ;          // major shaking step 
|       Improvement_procedure( ) ;     // improvement step with VND local search 
|    if  is feasible and improves the best solution  then 
|    |       ;  
|    end if 
end while 

3.1 Assignment model 
Most of the recent approaches to the 1-PDTSP use the nearest neighbor heuristics to generate the 
initial solutions. According to our computational experience, the probability to get a feasible solution 
using those heuristics is usually poor. Moreover, they only produce infeasible solutions for several 
most hard instances. Therefore, we propose a construction method based on an integer linear 
programming model (referred as Assignment_model()), which guarantees feasible initial solutions. At 
the same time, it is used as major shaking procedure by introducing a vertex-position based 
neighborhood structure, called k-position neighborhood. Given two solutions  ’ and  " , let 

’, "  be their distance measured as the sum of the customer positions differences between the 
two trips. Thus,  is considered as a k-position neighbor of " if ’, " . This neighborhood 
is expressed as a constraint in the linear programming model, and  defines the maximum number of 
customer positions differences between the current trip and the incumbent trip. 
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The proposed linear programming model corresponds to an assignment problem, which is defined as: 
given a set of vertices 1, . . , , in which vertex  is associated to the request , , and 

 is the vehicle capacity; given a set of trips (generated since the beginning of execution) 
, , . . ,  (each trip is a vector of size ) and given the incumbent solution . Let  be the 

vector corresponding to the current solution. The objective is to find an assignment between vertices 
and positions in , while satisfying the following constraints: 

 (c1) every vertex is assigned one position in ; 
 (c2) every position in  corresponds to one vertex; 
 (c3) the vehicle capacity is ensured; 
 (c4)  has to be a k-position neighbor of  if ;   
 (c5)  has to be different to all the trips in . 

To provide a mathematical model of this assignment problem, the following variables are defined: 

 0,1  : 1 if the vertex  is assigned to the position , 0 otherwise; 
 : load of the vehicle after visiting the th customer in the current trip. 

Then the assignment problem can be formulated as: 

LP 1

Minimize  
…

1

s.c.                                            

… 

1                                              2

1                         1 …                3

0 2 …                4

·
…

          5

   3
…

                1 … | |          6

0, 1                           , 1 …   7
                                  1 …               8

 

The objective function (1) is a constant since one only look for a feasible assignment. Constraints (2) 
to (6) correspond to (c1) to (c5); constraints (7) and (8) define respectively the variables  and . 
Moreover, the constraint (5) uses a parameter 0.5 1, which sets the k-position neighborhood 
structure between  and . Its value depends on the current size of  and on the instances size:  
= 0.5 if | | 10; otherwise 0.8 for small instances and 0.9 for medium instances. Note 
that every initial trip generated by this model is then added into . This assignment problem is quite 
easy to solve for any commercial solvers like CPLEX or Gurobi. 

3.2 Improvement phase 

The improvement phase is done by a procedure which combines here deterministic and stochastic 
neighborhoods. It relies on an iterative scheme: each iteration starts with the solution ′ obtained in 
the previous iteration. Then an auxiliary shaking is applied to ′ before performing the VND local 
search. The auxiliary shaking consists in randomly performing vertex-exchange operations (swap) and 
the VND local search uses several edge-exchange operators (k-Opt). As mentioned before, infeasible 
solutions are allowed during the improvement phase. More precisely, a Hamiltonian trip could violate 
the vehicle capacity constraint, in order to extend the solutions space and to avoid being trapped too 
easily in a local optimum. Consequently, all operators are adapted to handle infeasible solutions. Such 
a strategy has been already applied in [6].  
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The selection criterion in our k-Opt operators considers both infeasibility and quality of the neighbor 
solutions. The infeasibility threshold in those operators is considered as an input parameter, and it is 
denoted by . It is updated after each move in order to guide the operator towards feasible solutions. 
A neighbor solution  is accepted if  and if it has a better value. If the accepted 
solution is feasible, then  is set to 0, i.e. no infeasible solutions will be accepted henceforth; 
Otherwise,  is updated by setting    0,  –  , where  is a pre-defined value 
depending on the instance size. The selection criterion in swap operator only takes into account the 
infeasibility of the neighbor solution. A new solution is accepted if its infeasibility is smaller than , 
and  is not modified here.  

The local search uses two edge-exchange operators: 2-opt and 3-opt for small instances (  60 
vertices); 2-opt and or-opt for medium instances (  60 vertices). The edge-exchange operators test all 
possible combinations and use best-accept as replacement strategy. The 3-opt explores all neighbor 
structures shown in Figure 1 and the or-opt considers only the first one in order to reduce the 
processing time.   

 
(a) initial trip (b) neighbor 1 (c) neighbor 2 

 
(e) neighbor 3 (f) neighbor 4 (g) neighbor 5 

Figure 1 : 3-arcs-exchange movements 

The vertex-exchange mutation operator used in the auxiliary shaking step is swap. It randomly selects 
2 vertices in the current trip before swapping them. The number of swaps done consecutively is 
randomly chosen between 5 and 15. It uses a first-accept criterion.  

The stopping criterion used in the improvement procedure takes into account the feasibility of the 
solution obtained. Note that the input solution is always feasible, and infeasible solutions are allowed 
during the local search. The initial infeasibility threshold in this procedure is defined by . It is 
calculated using the same equation proposed in [6], i.e.: 

3 ∑ : , ∑ : / . Only feasible trips are accepted as incumbent 
solution. The procedure is stopped whenever the incumbent solution is improved in the last  
iterations or the value of  is null. Otherwise  is decreased in order to restrict the 
infeasible solution space, before starting the next iterations. The iterations number is not fixed in the 
procedure, and it could grow up to ( ). The value of  is set to 5 in our 
configuration. Moreover, the infeasibility value  is set to 0 whenever the current solution returned 
becomes feasible. The VND local search in this procedure using 2 edge-exchange operators. The 
improvement procedure is detailed in Algorithm 2.  

Algorithm 2: Improvement procedure with VND local search | Improvement_procedure( ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

 initial value ; 
’   ;  
  1 ;  

  false ; 
while not  do  
|      ;  
|    "  swap( ’, ) ;         
|    do 
|    |    do  
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10 
11 

 
12 
13 
14 
15 
16 
17 

 
18 
19 
20 

 
21 
22 
23 
24 
25 
26 
27 
28 
29  

|    |    |     ",  2-opt( ", ) ;  
|    |    while " is improved it this iteration 
|    | 
|    |    if | |  60 
|    |    |     ",   3-opt( ", ) ; 
|    |    else 
|    |    |     ",   or-opt( ", ) ; 
|    |    end if 
|    while " is improved by last operator it the current iteration; 
|  
|    if " is feasible and it improves the incumbent solution ’ then 
|    |     ’  ";  
|    end if 
|      
|    if  =  and (s’ is improved or = 0) then 
|    |      true ; 
|    else if  =  then  
|    |      1; 
|    |      1; 
|    else 
|    |       + 1; 
|    end if  
end while 

4 Computational results 

The proposed approach is implemented in C++ with GNU gcc compiler (version 4.1.2) and Gurobi 
libraries (version 4.5.1). All tests are performed on a PC with AMD Opteron CPU (2.3 GHz) under 
Linux (CentOS 64-bit). The number of cores used in Gurobi libraries is set to 1. The computational 
experiments have been tested on the benchmark instances of 1-PDTSP from [7]. These instances are 
generated by Hernández-Pérez et al., in which 1 customer are randomly located in the [-500, 
500] x [-500,500] square, and each customer  is associated with a random demand 10, 10 . 
The depot is located at (0, 0) with demand ∑ . Moreover, 2 groups of instances are used: 
small instances with number of vertices 20, 30, 40, 50, 60  and medium instances with 

70, 80, 90, 100 . For each value of , 10 different instances are defined and identified from ‘A’ 
to ‘J’. For each instance, each vehicle capacity 10, 15, 20, 25, 30, 35, 40, 45, 50, 1000  is 
considered. Those instances can be downloaded from 
http://webpages.ull.es/users/hhperez/PDsite/index.html.   

We report experiments with the smallest capacities: 20 for instances with 90 (no existing 
results are given for smaller vehicle capacities), and 10 for others. The proposed heuristic was 
run 5 times on each instance and the number of iterations is set to 300. The computational time is 
presented in two parts: shaking time for the assignment model in the major shaking step and 
improvement time for the improvement procedure.  

Table 1 shows the computational results for the small instances. The optimum values come from in 
[8]. The combination of columns “Group” and “Id” give the instance name; column “Optimal” gives 
the optimal value; column “Average” shows the average value obtained in 5 runs; the best value 
obtained is in column “Best” with the number of times it has been found over the 5 runs; column “% 
gap” is the relative gap in percent between the best value found and the optimal value; column “Best 
it.” reports the smallest number of iterations number for obtaining the best solution; columns “Times1” 
and “Time2” display respectively the average shaking time and the average improvement time in 
seconds (for 300 iterations).  

Table 1: computational results for small instances 
Group Id Optimal Proposed heuristic 

   Average Best % gap Best it. Time1 Time2 
N20q10 A 4963 4963.0  4963 (5) 0.00 1 29.37 8.39 

 B 4976 4976.0 4976 (5) 0.00 1 33.45 8.74 
 C 6333 6333.0 6333 (5) 0.00 1 104.93 50.71 
 D 6280 6280.0 6280 (5) 0.00 2 77.52 30.99 
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 E 6415 6415.0 6415 (5) 0.00 1 31.87 35.75 
 F 4805 4805.0 4805 (5) 0.00 1 42.52 11.78 
 G 5119 5119.0 5119 (5) 0.00 1 26.88 8.03 
 H 5594 5594.0 5594 (5) 0.00 1 32.73 10.81 
 I 5130 5157.0 5157 (5) 0.00 11 35.96 15.89 
 J 4410 4410.0 4410 (5) 0.00 1 38.62 11.25       

N30q10 A 6403 6403.0 6403 (5) 0.00 3 103.51 100.27 
 B 6603 6603.0 6603 (5) 0.00 1 98.12 76.25 
 C 6486 6486.0 6486 (5) 0.00 2 85.04 77.15 
 D 6652 6652.0 6652 (5) 0.00 7 89.09 137.83 
 E 6070 6070.0 6070 (5) 0.00 1 87.73 76.76 
 F 5737 5737.0 5737 (5) 0.00 1 79.87 82.05 
 G 9371 9371.0 9371 (5) 0.00 1 86.42 144.60 
 H 6431 6431.0 6431 (5) 0.00 1 80.67 71.64 
 I 5821 5821.0 5821 (5) 0.00 4 81.01 143.22 
 J 6187 6187.0 6187 (5) 0.00 4 94.80 83.74       

N40q10 A 7173 7173.0 7173 (5) 0.00 1 201.34 221.39 
 B 6557 6560.0 6557 (4) 0.00 4 249.09 213.05 
 C 7528 7528.0 7528 (5) 0.00 14 189.24 223.46 
 D 8059 8059.0 8059 (5) 0.00 7 213.88 255.52 
 E 6928 6928.0 6928 (5) 0.00 5 204.20 232.12 
 F 7506 7514.8 7506 (3) 0.00 17 232.48 255.83 
 G 7624 7642.0 7624 (3) 0.00 35 211.09 390.48 
 H 6791 6791.0 6791 (5) 0.00 5 224.20 290.93 
 I 7215 7215.0 7215 (5) 0.00 2 258.46 327.60 
 J 6512 6512.0 6512 (5) 0.00 2 205.43 156.94       

N50q10 A 6987 6987.0 6987 (5) 0.00 4 265.20 232.16 
 B 9488 9488.0 9488 (5) 0.00 15 677.49 521.52 
 C 9110 9114.4 9110 (3) 0.00 8 480.71 542.49 
 D 10260 10299.5 10260 (4) 0.00 40 435.20 591.66 
 E 9492 9492.0 9492 (5) 0.00 17 453.64 837.17 
 F 8684 8684.0 8684 (5) 0.00 21 486.02 984.81 
 G 7126 7126.0 7126 (5) 0.00 31 447.54 547.54 
 H 8885 8912.4 8885 (3) 0.00 61 423.08 436.45 
 I 8329 8339.8 8329 (4) 0.00 31 373.15 786.06 
 J 8456 8256.0 8456 (5) 0.00 27 639.50 611.44       

N60q10 A 8602 8602.0 8602 (5) 0.00 35 763.74 697.91 
 B 8514 8514.0 8514 (5) 0.00 48 1301.75 732.57 
 C 9453 9476.6 9453 (1) 0.00 257 1083.57 808.37 
 D 11059  11131.8 11061 (1) 0.02 149 1208.36 781.50 
 E 9487 9529.0 9487 (3) 0.00 73 831.26 649.18 
 F 9063 9105.4 9063 (2) 0.00 191 1253.59 1232.53 
 G 8912 8963.6 8912 (2) 0.00 104 1246.94 895.69 
 H 8424 8426.8 8424 (4) 0.00  33 846.91 694.55 
 I 9394 9451.6 9394 (1) 0.00 287 894.97 886.43 
 J 8750 8765.6 8750 (4) 0.00 90 816.56 662.09       

In the Table 1, we can see that the proposed heuristic is able to find the optimal values at least once in 
the 5 runs for 49 out of the 50 instances. Comparing with the existing heuristics in the literature, 
optimal values were found 46 in [6] (with 25 runs), 50 in [11] (with 10 runs) and 39 in [3] (with 5 
runs). For the instance “N60q10D” where the optimum was not found, the gap is 0.02%. The average 
shaking time (respectively improvement time) is 45.39 seconds (19.23 seconds) for the group of 20 
vertices and 1024.76 seconds (804.08 seconds) for the group of 60 vertices.  

Table 2 shows the computational results for the medium instances. Its columns have the same 
definition as in Table 1, except for columns “BKR” and “% gap”: the column “BKR” reports the value 
of the best known results in the literature, since the optimal values are not known; the column “% gap” 
becomes then the difference between the best value ILS/VND found and the value of the best known 
solution. The best known solutions come from [7] for 70, 80, 90  and from [3, 6 and 11] for 

100. 

Table 2: computational results for medium instances 
Group Id BKR Proposed heuristic 

   Average Best % gap Best it. Time1 Time2 
N70q10 A 9312 9312.0 9312 (5) 0.00 25 1295.13 101.15 

 B 10106 10117.6 10106 (4) 0.00 74 2798.73 133.13 
 C 9959 9980.6 9959 (2) 0.00 107 1324.58 154.55 
 D 10386 10386.0 10386 (5) 0.00 21 2315.64 176.23 
 E 13055 13107.2 13069 (1) 0.11 247 2430.43 201.97 
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 F 10191 10224.2 10198 (3) 0.07 64 2571.73 158.81 
 G 9916 9994.6 9916 (1) 0.00 240 2106.90 152.64 
 H 8868 8897.4 8868 (2) 0.00  245 2127.29 140.63 
 I 10051 10092.4 10051 (3)  0.00 138 2820.31 188.81 
 J 10414 10474.2 10414 (2) 0.00 16 1437.17 126.47       

N80q10 A 11597 11532.8 11421 (1) -1.52 298 3042.07 144.23 
 B 12861 12883.2 12861 (2) 0.00 203 5264.89 238.28 
 C 12471 12414.0 12358 (2) -0.91 90 3372.82 273.82 
 D 11050 11160.0 11050 (2) 0.00 132 3804.69 201.55 
 E 11185 11255.4 11185 (2) 0.00 115 4835.44 332.34 
 F 14012 13677.4 13650 (1) -2.58 275 3544.13 302.81 
 G 11413 11154.0 11108 (1) -2.67 280 3292.22 228.64 
 H 11307 11112.6 11075 (1) -2.05 124 3777.44 235.63 
 I 11063 11185.0 11063 (3) 0.00 181 4428.85 283.27 
 J 9263 9278.2 9263 (3) 0.00 113 2605.56 144.36       

N90q20 A 8079 8083.2 8079 (2) 0.00 24 639.65 73.04 
 B 8673 8567.4 8507 (1) -1.91 248 954.33 95.10 
 C 8448 8478.2 8468 (2) 0.24 38 658.10 89.80 
 D 9369 9504.8 9469 (1) 1.07 272 1045.29 109.86 
 E 10072 9749.0 9674 (1) -3.95 286 866.55 118.07 
 F 10295 10053.4 9961 (1) -3.24 250 878.00 119.18 

 G 8339 8360.6 8355 (1) 0.19 86 580.06 83.27 
 H 9234 9243.6 9234 (2) 0.00 165 580.08 116.39 
 I 8601 8658.6 8601 (1) 0.00 193 626.25 111.48 
 J 8204 8204.0 8204 (5) 0.00 8 710.18 84.24       

N100q10 A 11741 11762.2   11700 (1) -0.35 258 6619.31 280.75 
 B 13066 13128.4   13003 (1) -0.48 236 6242.00 383.59 
 C 13893 13975.4  13896 (1) 0.02 221 10274.80 400.09 
 D 14253 14341.6 14257 (1) 0.03 279 11312.30 481.68 
 E 11411 11416.4 11411 (2) 0.00 191 14003.20 576.32 
 F 11644 11689.2 11635 (1) -0.08 297 5199.37 340.74 
 G 12025 11983.0 11866 (1) -1.32 299 8573.25 326.39 
 H 12818 12727.2 12673 (2) -1.13 144 7449.64 445.39 
 I 14025 13929.0 13834 (1) -1.36 282 8952.98 479.24 
 J 13293 13371.4 13222 (1) -0.53 244 5563.60 275.94       

The results in Table 2 show an average improvement of 0.97% on the gap for 80 and 0.76% for 
90. Moreover, for the instances with 100 vertices, we improved 7 out of 10 best known solutions. 

This corresponds to a 0.52% gap improvement for the best known solutions, and 1.60% gap 
improvement when comparing with [6] (all of the 10 solutions in [6] were improved). The average 
shaking time (respectively improvement time) is 2122.79 seconds (153.44 seconds) for the group of 70 
vertices and 8419.05 seconds (399.01 seconds) for the group of 100 vertices. 

The computational results show that the proposed approach gives better results than the existing 
heuristics. However its processing time is still large and it relies on a mathematical model. More 
specifically, the shaking time increases from 45.39 seconds (0.15 seconds per iteration) for 20 vertices 
to 8419.05 seconds (28.06 seconds per iteration) for 100 vertices. Note that the shaking time could be 
reduced by increasing the parameter  in the model. The solutions of several instances could be 
improved by increasing the number of iterations as well.  

5 Conclusions  

In this paper, we have presented a hybrid ILS/VND heuristic for the 1-PDTSP, in which a new way of 
generating feasible initial solutions using an assignment model is developed, and it is used as major 
shaking procedure. We also implemented an improvement procedure which combines an auxiliary 
shaking step and a VND local search. The relaxation of the vehicle capacity constraint is allowed 
during the improvement procedure. A neighbor solution explored by the assignment model in the 
major shaking step is considered as a k-position neighbor to the incumbent solution, where k is the 
maximum number of customer positions different between two solutions. The improvement procedure 
uses a vertex-exchange operator (swap) in the auxiliary shaking step, and edge-exchange operators (k-
Opt) in the VND local search. 

The proposed approach is evaluated on small and medium benchmark instances with the smallest 
vehicles capacities for which the problem is known to be harder. The experimental results show that 
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our method gives almost all optimum solutions on the small instances (49 out of 50). We improved 7 
out of 10 for the group of most difficult medium instances when comparing with the best known 
solutions. However, the running time remains high, especially when considering the shaking step. 

As future work, we are interested in reducing the running time of this, especially to address the 
dynamic version of the problem where the stations’ availability can quickly evolve over the time.   

On the other hand, a variant of the 1-PDTSP with demand splitting could be also investigated, in 
which a customer request could be separated into several parts and each part is treated separately by 
the vehicle. This could model situations where the imbalance at some stations exceeds the vehicle 
capacity and several operations/visits should be done instead of a single one.  
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