

International Workshop
on Green Supply Chain

GSC’ 2012

June 21 - 22, 2012

ARRAS- FRANCE

A hybrid ILS/VND heuristic for the One-Commodity
Pickup-and-Delivery Traveling Salesman Problem *

Libo REN a, Christophe DUHAMEL b,
 Alain QUILLIOT a

a LIMOS UMR CNRS 6158, Université Clermont-Ferrand II,
Campus des Cézeaux, 63173 Aubière Cedex France

ren@isima.fr, alain.quilliot@isima.fr
b ICD-LOSI, STMR UMR CNRS 6279, Université de Technologie de Troyes,

 12, Rue Marie Curie, BP 2060, F-10010 Troyes Cedex France
christophe.duhamel@utt.fr

Abstract

The One-commodity Pickup-and-Delivery Traveling Salesman Problem (1-PDTSP) is a variant of the Traveling Salesman
Problem (TSP) introduced by Hernández-Pérez et Salazar-González [1]. In the 1-PDTSP, a set of customers has to be
addressed by one vehicle initially located at the depot. Each customer is associated with a demand of the same item type.
According to its demand, a customer can be a supplier (with pickup operation) if its demand is positive or a consumer (with
delivery operation) otherwise. Any item picked up at a customer can be used to a delivery. The objective is to find a
minimum cost Hamiltonian route for a capacitated vehicle. It has to perform the pickups and the deliveries at each customer
in order to satisfy all of requests. In the real world application, the 1-PDTSP can be employed for the management of the
public bicycle sharing systems like Vélib’ in Paris. In this paper, we propose a hybrid Iterated Local Search (ILS) / Variable
Neighborhood Descent (VND) heuristic for the 1-PDTSP. In the ILS, an assignment model is used at first to generate a
feasible initial solution. The same model is served then as major shaking procedure, which aims at finding a k-position
neighbor of the incumbent solution, where k defines the maximum number of customer positions different between two
solutions. All generated neighbor solutions using this model are stored in a vector in order to avoid the solution duplication.
An explored neighbor solution is then improved using the improvement procedure, which combines an auxiliary shaking step
and a VND local search with a strategy of relaxation of capacity. The proposed heuristic is tested on small and medium
instances. The computational results show that it gives competitive results comparing with the existing heuristics.

Key words: Pickup-and-Delivery Problem (PDP), Traveling Salesman Problem (TSP), 1-PDTSP, ILS, VND, heuristic.

1 Introduction

Public bicycle sharing systems like Vélo’V in Lyon (2005) and Vélib’ in Paris (2007) are now
widespread in French cities. Their primary aim is to reduce the congestion in urban centers by
providing a greener transportation means. Consequently, this should also reduce the chemical and
noise pollution and improve the quality of life in city centers. Yet, those systems suffer form some
operational issues. For instance, coherent population moves (going to work in the morning, going back

* This paper was not presented at any other revue.

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

home at the end of the day) lead to disparities on the stations: some stations are empty at some time of
the day while others are saturated. Moreover, stations at the most elevated parts of cities (Montmartre
in Paris for instance) typically face a bicycle imbalance. Adjusting the pricing or improving the
stations location can help reducing the problem, but this does not remove the need for proactive
relocation operations. Agents use vehicles to pick bicycles form saturated stations to put them on
empty stations. This improves the global availability of the system. Due to the size of the system,
optimizing the availability is an important issue.

We consider here a single agent and we model the problem as the One-Commodity Pickup-and-
Delivery Traveling Salesman Problem (1-PDTSP). It is a variant of the Traveling Salesman Problem
(TSP) introduced by Hernández-Pérez et Salazar-González [1]. In the 1-PDTSP, a set of sites is
considered. It consists of a group of customers and one depot. Each customer is associated with a
request which corresponds to an items demand, positive or negative. The customers can be divided
into two subsets according to their demands: the pickup customers provide items while delivery
customers consume the items. Thus, there is a single homogeneous commodity, without specific
identifications or known destination. Then, items collected at pickup customers can be delivered to
any delivery customers. Each customer is served only once by a capacitated vehicle. The vehicle starts
and ends its route at the depot. Moreover, the depot can provide items and the vehicle may leave the
depot with some items. Without loss of generality, the sum of the customers’ requests is null, which
means the vehicle must return to the depot with the same initial load. The objective is to find a
minimum cost Hamiltonian route for the vehicle, and each customer must be visited once and its
request must be satisfied, while respecting the vehicle capacity constraint.

The 1-PDTSP is defined on a complete and directed graph , , where 0, . . , is the set
of sites and , | , , is the set of arcs. The set of sites contain the depot (denoted
by 0) and customers (denoted by 1, . . ,). Each customer is associated with a demand ,

0 (0) if corresponds to a delivery (pickup) customer. The depot can be considered as a
special customer by setting ∑ \ , i.e., a customer absorbing or providing the necessary
amount of item to ensure product conservation [1]. The capacity of vehicle is denoted by .
Moreover, the depot can provide an additional initial amount of items (that is not consumed by the
customers) to the vehicle when leaving the depot, with 0 | | . Each arc (,) is
associated with a non-negative cost . The objective of the 1-PDTSP is to find the minimum cost
Hamiltonian tour considering the following constraints:

 The route starts and ends at the depot;
 Each customer is visited one time;
 The vehicle load does not exceed its capacity;
 All requests are satisfied.

The 1-PDTSP is NP-hard (see [1]). Moreover, even finding a feasible solution may be very difficult
when the vehicle capacity is small (close to the largest demand). According to the classification of
Berbeglia et al. [2], the 1-PDTSP can be considered as a Pickup-and-Delivery Problem (PDP) with a
many-to-many structure and a single type of commodity. The commodity is characterized by its
specific feature, since any vertex can serve as a source or as a destination for each request. Recently,
Hosny and Mumford [3] proposed to refer this class of problems as the One-Commodity Pickup and
Delivery Problem (1-PDP). Those many-to-many problems are relevant in shared transportation
systems since we do not need to consider each shared-vehicle separately. We focus here on the
management of public bicycle sharing systems like Vélo’V in Lyon or Vélib’ in Paris. Thus, the 1-
PDTSP is used to model the reorganization of the bicycle availability at each location site under a
static context. In such an application, the items are the bicycles. They all are similar and should be
collected from some sites and delivered to others sites in order to balance the availability of each site
of the sharing system.

In this paper, we propose a hybrid ILS/VND heuristic to solve the 1-PDTSP. In this approach, an
assignment model is used in the construction phase and in the major shaking step of ILS [4]. The
integer linear programming model aims at building the feasible initial solutions in the construction

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

phase. It uses a k-position neighborhood structure to define the neighbor solutions of the incumbent
solution whenever in shaking step. The model can be solved with any linear programming solver in a
short computational time. All generated neighbor solutions are stored in a global vector in order to
avoid any possible duplication during the execution. A neighbor solution is then improved using an
improvement phase which combines an auxiliary shaking step and a VND local search [5] with several
adaptations of classic edge-exchange operators from the TSP. Those adaptations are defined on top of
a capacity relaxation scheme in order to be able to explore the solution space more efficiently as
described in Hernández-Pérez et al. [6]. The proposed heuristic is tested on the small and medium
instances introduced in Hernández-Pérez et al. [7].

The paper is organized as follows. Section 2 is a summary of works related to the 1-PDTSP. Section 3
describes the proposed approach. The computational results are presented in section 4, before
conclusions in section 5.

2 Related Work

Since the 1-PDTSP is a recent variation of the TSP, few articles have been published in the literature.
Hernández-Pérez and Salazar-González presented a branch-and-cut algorithm to solve instances with
up to 50 customers [8]. The exact algorithms are not suitable for solving large instances, but they can
be used for providing good lower bounds.

Then, Hernández-Pérez and Salazar-González proposed two heuristic algorithms in [9]. The first one
is based on a greedy algorithm followed by an improvement phase using edge-exchange operators.
Since it is difficult to generate a feasible solution when the vehicle capacity is close to the largest
demand, they introduced the notion of infeasibility to evaluate a solution. It measures the difference
between the vehicle capacity and the largest load during its trip. A solution is said to be feasible
if 0. A multi-start scheme is used in this heuristic: each iteration starts with an initial
solution built by a nearest neighbor (NN) algorithm, which encourages the selection of edges
connecting customers of different types by slightly penalizing the use of edges connecting same
customer-type. The initial solution may still not to be feasible. It is then improved by a local search
based on 2-Opt and 3-Opt edge exchanges. The second heuristic relies on a partial optimization
strategy. It uses the same construction algorithm as before. A new neighborhood structure, called k-
neighborhood is defined, where k measures the difference in terms of edges. In order to explore the k-
neighborhood of a solution, they adapt the ILP model in [1] using an additional inequality, and then
solve it using a branch-and-cut algorithm. Thus, the approach corresponds to a limited descent (with at
most 6 steps) in the local branching strategy [10].

The same authors also propose a hybrid GRASP/VND heuristic in [6]. It combines a GRASP (Greedy
Randomized Adaptive Search Procedure) metaheuristic with a VND (Variable Neighborhood Descent)
local search. GRASP is based on the repetition of a greedy construction algorithm and a local search.
VND was initially defined as the local search of VNS [5]. It relies on several pre-defined
neighborhood operators, which are usually sorted according to their complexity. When one operator is
not able to improve the current solution, the VND switches to the next one, otherwise it performs the
move before resuming to the first operator. The VND stops whenever a local optimum for all the
operators is reached. Hernández-Pérez and Salazar-González also define a second VND (with vertex-
exchange operators) in a post-optimization step. Infeasible solutions are allowed in the GRASP/VND
step, since its aim is to find a good feasible solution. Then the post-optimization tries to improve the
solution computed in the first step while satisfying the vehicle capacity.

Zhao et al. [11] have proposed a Genetic Algorithm for the 1-PDTSP. The algorithm first builds a
population of feasible solutions using a non-deterministic nearest-neighbor construction heuristic. The
initial population is then improved by a local search based on the 2-Opt edge-exchange operator. A
pheromone-based crossover operator is proposed to generate new solutions. Such an idea comes from
the ant colony algorithm, which stores pheromone trails related to arcs as global information. In order
to generate a child solution, the pheromone-based operator first randomly selects a customer to be the
first visited in the trip. It then iteratively appends a feasible customer taking into account its neighbors

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

in both two parents and the pheromone related to the last customer inserted. If all the neighbors have
been already inserted or if none of them can be added to the end of the tours, a probabilistic rule is
used to sort the non-visited customers. Then on of them is selected by considering its priority. This
rule takes into account the pheromone on the arcs linked to the last customer of the trip. Otherwise, the
nearest feasible neighbor is selected. The child solution has to be feasible. It is then improved by a 2-
Opt before applying the 3 vertex-exchange mutation operator. A new population is generated by
replacing half of its solutions by the children. The pheromones are updated after each population
generation. This algorithm works on the space of feasible solutions, and thus does not need any
relaxation of vehicle capacity.

More recently, Hosny et al. [3] proposed a hybrid VNS/SA (Variable Neighborhood Search/Simulated
Annealing) for solving the 1-PDTSP. Their idea is to use a SA acceptation criterion when a local
optimum explored during the VNS is worse than the current solution. This criterion allows local
search to escape from a local optimum besides the original VNS shaking mechanism. The proposed
algorithm uses an iterative scheme. Each iteration starts with the incumbent solution obtained in the
previous iterations. The maximum neighborhood size is not fixed and it depends on the current
iteration number. Actually it is gradually reduced during the iterations: early iterations use large
neighborhood sizes, which allows wider jumps in the solution space (from the current solution); later
iterations only allow limited explorations in the search space, in order to maintain the solution quality.
Moreover, they use a variation of the construction algorithm proposed by [11]. The infeasible solutions
are allowed both in the construction phase and in the local search.

3 The proposed approach for the 1-PDTSP

The approach we propose uses a hybrid ILS/VND scheme, which contains an assignment model and
an improvement procedure. The assignment model is used firstly to generate a feasible initial solution
in the construction step. It is served then as major shaking step, which aims at finding a k-position
neighbor to the incumbent solution. Only feasible solutions are accepted by the assignment model.
More detail of this model is described in the section 3.1. An accepted neighbor solution is then
improved by a procedure combines an auxiliary shaking step and a VND local search. The
improvement procedure relies on k-Opt edge-exchange operators and a vertex-exchange mutation
operator (see section 3.2). It allows the relaxation of the vehicle capacity. The stopping criterion in the
ILS is defined as a fixed number of iterations. Algorithm 1 outlines the proposed approach for the 1-
PDTSP. Each component is described in next subsections.

Algorithm 1: Hybrid ILS/VND heuristic for the 1-PDTSP
1
2
3
4
5
6
7
8

 Assignment_model(); // construction step
while stopping criterion is not satisfied do
| Assignment_model() ; // major shaking step
| Improvement_procedure() ; // improvement step with VND local search
| if is feasible and improves the best solution then
| | ;
| end if
end while

3.1 Assignment model
Most of the recent approaches to the 1-PDTSP use the nearest neighbor heuristics to generate the
initial solutions. According to our computational experience, the probability to get a feasible solution
using those heuristics is usually poor. Moreover, they only produce infeasible solutions for several
most hard instances. Therefore, we propose a construction method based on an integer linear
programming model (referred as Assignment_model()), which guarantees feasible initial solutions. At
the same time, it is used as major shaking procedure by introducing a vertex-position based
neighborhood structure, called k-position neighborhood. Given two solutions ’ and " , let

’, " be their distance measured as the sum of the customer positions differences between the
two trips. Thus, is considered as a k-position neighbor of " if ’, " . This neighborhood
is expressed as a constraint in the linear programming model, and defines the maximum number of
customer positions differences between the current trip and the incumbent trip.

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

The proposed linear programming model corresponds to an assignment problem, which is defined as:
given a set of vertices 1, . . , , in which vertex is associated to the request , , and

 is the vehicle capacity; given a set of trips (generated since the beginning of execution)
, , . . , (each trip is a vector of size) and given the incumbent solution . Let be the

vector corresponding to the current solution. The objective is to find an assignment between vertices
and positions in , while satisfying the following constraints:

 (c1) every vertex is assigned one position in ;
 (c2) every position in corresponds to one vertex;
 (c3) the vehicle capacity is ensured;
 (c4) has to be a k-position neighbor of if ;
 (c5) has to be different to all the trips in .

To provide a mathematical model of this assignment problem, the following variables are defined:

 0,1 : 1 if the vertex is assigned to the position , 0 otherwise;
 : load of the vehicle after visiting the th customer in the current trip.

Then the assignment problem can be formulated as:

LP 1

Minimize
…

1

s.c.

…

1 2

1 1 … 3

0 2 … 4

·
…

 5

 3
…

 1 … | | 6

0, 1 , 1 … 7
 1 … 8

The objective function (1) is a constant since one only look for a feasible assignment. Constraints (2)
to (6) correspond to (c1) to (c5); constraints (7) and (8) define respectively the variables and .
Moreover, the constraint (5) uses a parameter 0.5 1, which sets the k-position neighborhood
structure between and . Its value depends on the current size of and on the instances size:
= 0.5 if | | 10; otherwise 0.8 for small instances and 0.9 for medium instances. Note
that every initial trip generated by this model is then added into . This assignment problem is quite
easy to solve for any commercial solvers like CPLEX or Gurobi.

3.2 Improvement phase

The improvement phase is done by a procedure which combines here deterministic and stochastic
neighborhoods. It relies on an iterative scheme: each iteration starts with the solution ′ obtained in
the previous iteration. Then an auxiliary shaking is applied to ′ before performing the VND local
search. The auxiliary shaking consists in randomly performing vertex-exchange operations (swap) and
the VND local search uses several edge-exchange operators (k-Opt). As mentioned before, infeasible
solutions are allowed during the improvement phase. More precisely, a Hamiltonian trip could violate
the vehicle capacity constraint, in order to extend the solutions space and to avoid being trapped too
easily in a local optimum. Consequently, all operators are adapted to handle infeasible solutions. Such
a strategy has been already applied in [6].

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

The selection criterion in our k-Opt operators considers both infeasibility and quality of the neighbor
solutions. The infeasibility threshold in those operators is considered as an input parameter, and it is
denoted by . It is updated after each move in order to guide the operator towards feasible solutions.
A neighbor solution is accepted if and if it has a better value. If the accepted
solution is feasible, then is set to 0, i.e. no infeasible solutions will be accepted henceforth;
Otherwise, is updated by setting 0, – , where is a pre-defined value
depending on the instance size. The selection criterion in swap operator only takes into account the
infeasibility of the neighbor solution. A new solution is accepted if its infeasibility is smaller than ,
and is not modified here.

The local search uses two edge-exchange operators: 2-opt and 3-opt for small instances (60
vertices); 2-opt and or-opt for medium instances (60 vertices). The edge-exchange operators test all
possible combinations and use best-accept as replacement strategy. The 3-opt explores all neighbor
structures shown in Figure 1 and the or-opt considers only the first one in order to reduce the
processing time.

(a) initial trip (b) neighbor 1 (c) neighbor 2

(e) neighbor 3 (f) neighbor 4 (g) neighbor 5

Figure 1 : 3-arcs-exchange movements

The vertex-exchange mutation operator used in the auxiliary shaking step is swap. It randomly selects
2 vertices in the current trip before swapping them. The number of swaps done consecutively is
randomly chosen between 5 and 15. It uses a first-accept criterion.

The stopping criterion used in the improvement procedure takes into account the feasibility of the
solution obtained. Note that the input solution is always feasible, and infeasible solutions are allowed
during the local search. The initial infeasibility threshold in this procedure is defined by . It is
calculated using the same equation proposed in [6], i.e.:

3 ∑ : , ∑ : / . Only feasible trips are accepted as incumbent
solution. The procedure is stopped whenever the incumbent solution is improved in the last
iterations or the value of is null. Otherwise is decreased in order to restrict the
infeasible solution space, before starting the next iterations. The iterations number is not fixed in the
procedure, and it could grow up to (). The value of is set to 5 in our
configuration. Moreover, the infeasibility value is set to 0 whenever the current solution returned
becomes feasible. The VND local search in this procedure using 2 edge-exchange operators. The
improvement procedure is detailed in Algorithm 2.

Algorithm 2: Improvement procedure with VND local search | Improvement_procedure()
1
2
3
4
5
6
7
8
9

 initial value ;
’ ;
 1 ;

 false ;
while not do
| ;
| " swap(’,) ;
| do
| | do

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

10
11

12
13
14
15
16
17

18
19
20

21
22
23
24
25
26
27
28
29

| | | ", 2-opt(",) ;
| | while " is improved it this iteration
| |
| | if | | 60
| | | ", 3-opt(",) ;
| | else
| | | ", or-opt(",) ;
| | end if
| while " is improved by last operator it the current iteration;
|
| if " is feasible and it improves the incumbent solution ’ then
| | ’ ";
| end if
|
| if = and (s’ is improved or = 0) then
| | true ;
| else if = then
| | 1;
| | 1;
| else
| | + 1;
| end if
end while

4 Computational results

The proposed approach is implemented in C++ with GNU gcc compiler (version 4.1.2) and Gurobi
libraries (version 4.5.1). All tests are performed on a PC with AMD Opteron CPU (2.3 GHz) under
Linux (CentOS 64-bit). The number of cores used in Gurobi libraries is set to 1. The computational
experiments have been tested on the benchmark instances of 1-PDTSP from [7]. These instances are
generated by Hernández-Pérez et al., in which 1 customer are randomly located in the [-500,
500] x [-500,500] square, and each customer is associated with a random demand 10, 10 .
The depot is located at (0, 0) with demand ∑ . Moreover, 2 groups of instances are used:
small instances with number of vertices 20, 30, 40, 50, 60 and medium instances with

70, 80, 90, 100 . For each value of , 10 different instances are defined and identified from ‘A’
to ‘J’. For each instance, each vehicle capacity 10, 15, 20, 25, 30, 35, 40, 45, 50, 1000 is
considered. Those instances can be downloaded from
http://webpages.ull.es/users/hhperez/PDsite/index.html.

We report experiments with the smallest capacities: 20 for instances with 90 (no existing
results are given for smaller vehicle capacities), and 10 for others. The proposed heuristic was
run 5 times on each instance and the number of iterations is set to 300. The computational time is
presented in two parts: shaking time for the assignment model in the major shaking step and
improvement time for the improvement procedure.

Table 1 shows the computational results for the small instances. The optimum values come from in
[8]. The combination of columns “Group” and “Id” give the instance name; column “Optimal” gives
the optimal value; column “Average” shows the average value obtained in 5 runs; the best value
obtained is in column “Best” with the number of times it has been found over the 5 runs; column “%
gap” is the relative gap in percent between the best value found and the optimal value; column “Best
it.” reports the smallest number of iterations number for obtaining the best solution; columns “Times1”
and “Time2” display respectively the average shaking time and the average improvement time in
seconds (for 300 iterations).

Table 1: computational results for small instances
Group Id Optimal Proposed heuristic

 Average Best % gap Best it. Time1 Time2
N20q10 A 4963 4963.0 4963 (5) 0.00 1 29.37 8.39

 B 4976 4976.0 4976 (5) 0.00 1 33.45 8.74
 C 6333 6333.0 6333 (5) 0.00 1 104.93 50.71
 D 6280 6280.0 6280 (5) 0.00 2 77.52 30.99

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

 E 6415 6415.0 6415 (5) 0.00 1 31.87 35.75
 F 4805 4805.0 4805 (5) 0.00 1 42.52 11.78
 G 5119 5119.0 5119 (5) 0.00 1 26.88 8.03
 H 5594 5594.0 5594 (5) 0.00 1 32.73 10.81
 I 5130 5157.0 5157 (5) 0.00 11 35.96 15.89
 J 4410 4410.0 4410 (5) 0.00 1 38.62 11.25

N30q10 A 6403 6403.0 6403 (5) 0.00 3 103.51 100.27
 B 6603 6603.0 6603 (5) 0.00 1 98.12 76.25
 C 6486 6486.0 6486 (5) 0.00 2 85.04 77.15
 D 6652 6652.0 6652 (5) 0.00 7 89.09 137.83
 E 6070 6070.0 6070 (5) 0.00 1 87.73 76.76
 F 5737 5737.0 5737 (5) 0.00 1 79.87 82.05
 G 9371 9371.0 9371 (5) 0.00 1 86.42 144.60
 H 6431 6431.0 6431 (5) 0.00 1 80.67 71.64
 I 5821 5821.0 5821 (5) 0.00 4 81.01 143.22
 J 6187 6187.0 6187 (5) 0.00 4 94.80 83.74

N40q10 A 7173 7173.0 7173 (5) 0.00 1 201.34 221.39
 B 6557 6560.0 6557 (4) 0.00 4 249.09 213.05
 C 7528 7528.0 7528 (5) 0.00 14 189.24 223.46
 D 8059 8059.0 8059 (5) 0.00 7 213.88 255.52
 E 6928 6928.0 6928 (5) 0.00 5 204.20 232.12
 F 7506 7514.8 7506 (3) 0.00 17 232.48 255.83
 G 7624 7642.0 7624 (3) 0.00 35 211.09 390.48
 H 6791 6791.0 6791 (5) 0.00 5 224.20 290.93
 I 7215 7215.0 7215 (5) 0.00 2 258.46 327.60
 J 6512 6512.0 6512 (5) 0.00 2 205.43 156.94

N50q10 A 6987 6987.0 6987 (5) 0.00 4 265.20 232.16
 B 9488 9488.0 9488 (5) 0.00 15 677.49 521.52
 C 9110 9114.4 9110 (3) 0.00 8 480.71 542.49
 D 10260 10299.5 10260 (4) 0.00 40 435.20 591.66
 E 9492 9492.0 9492 (5) 0.00 17 453.64 837.17
 F 8684 8684.0 8684 (5) 0.00 21 486.02 984.81
 G 7126 7126.0 7126 (5) 0.00 31 447.54 547.54
 H 8885 8912.4 8885 (3) 0.00 61 423.08 436.45
 I 8329 8339.8 8329 (4) 0.00 31 373.15 786.06
 J 8456 8256.0 8456 (5) 0.00 27 639.50 611.44

N60q10 A 8602 8602.0 8602 (5) 0.00 35 763.74 697.91
 B 8514 8514.0 8514 (5) 0.00 48 1301.75 732.57
 C 9453 9476.6 9453 (1) 0.00 257 1083.57 808.37
 D 11059 11131.8 11061 (1) 0.02 149 1208.36 781.50
 E 9487 9529.0 9487 (3) 0.00 73 831.26 649.18
 F 9063 9105.4 9063 (2) 0.00 191 1253.59 1232.53
 G 8912 8963.6 8912 (2) 0.00 104 1246.94 895.69
 H 8424 8426.8 8424 (4) 0.00 33 846.91 694.55
 I 9394 9451.6 9394 (1) 0.00 287 894.97 886.43
 J 8750 8765.6 8750 (4) 0.00 90 816.56 662.09

In the Table 1, we can see that the proposed heuristic is able to find the optimal values at least once in
the 5 runs for 49 out of the 50 instances. Comparing with the existing heuristics in the literature,
optimal values were found 46 in [6] (with 25 runs), 50 in [11] (with 10 runs) and 39 in [3] (with 5
runs). For the instance “N60q10D” where the optimum was not found, the gap is 0.02%. The average
shaking time (respectively improvement time) is 45.39 seconds (19.23 seconds) for the group of 20
vertices and 1024.76 seconds (804.08 seconds) for the group of 60 vertices.

Table 2 shows the computational results for the medium instances. Its columns have the same
definition as in Table 1, except for columns “BKR” and “% gap”: the column “BKR” reports the value
of the best known results in the literature, since the optimal values are not known; the column “% gap”
becomes then the difference between the best value ILS/VND found and the value of the best known
solution. The best known solutions come from [7] for 70, 80, 90 and from [3, 6 and 11] for

100.

Table 2: computational results for medium instances
Group Id BKR Proposed heuristic

 Average Best % gap Best it. Time1 Time2
N70q10 A 9312 9312.0 9312 (5) 0.00 25 1295.13 101.15

 B 10106 10117.6 10106 (4) 0.00 74 2798.73 133.13
 C 9959 9980.6 9959 (2) 0.00 107 1324.58 154.55
 D 10386 10386.0 10386 (5) 0.00 21 2315.64 176.23
 E 13055 13107.2 13069 (1) 0.11 247 2430.43 201.97

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

 F 10191 10224.2 10198 (3) 0.07 64 2571.73 158.81
 G 9916 9994.6 9916 (1) 0.00 240 2106.90 152.64
 H 8868 8897.4 8868 (2) 0.00 245 2127.29 140.63
 I 10051 10092.4 10051 (3) 0.00 138 2820.31 188.81
 J 10414 10474.2 10414 (2) 0.00 16 1437.17 126.47

N80q10 A 11597 11532.8 11421 (1) -1.52 298 3042.07 144.23
 B 12861 12883.2 12861 (2) 0.00 203 5264.89 238.28
 C 12471 12414.0 12358 (2) -0.91 90 3372.82 273.82
 D 11050 11160.0 11050 (2) 0.00 132 3804.69 201.55
 E 11185 11255.4 11185 (2) 0.00 115 4835.44 332.34
 F 14012 13677.4 13650 (1) -2.58 275 3544.13 302.81
 G 11413 11154.0 11108 (1) -2.67 280 3292.22 228.64
 H 11307 11112.6 11075 (1) -2.05 124 3777.44 235.63
 I 11063 11185.0 11063 (3) 0.00 181 4428.85 283.27
 J 9263 9278.2 9263 (3) 0.00 113 2605.56 144.36

N90q20 A 8079 8083.2 8079 (2) 0.00 24 639.65 73.04
 B 8673 8567.4 8507 (1) -1.91 248 954.33 95.10
 C 8448 8478.2 8468 (2) 0.24 38 658.10 89.80
 D 9369 9504.8 9469 (1) 1.07 272 1045.29 109.86
 E 10072 9749.0 9674 (1) -3.95 286 866.55 118.07
 F 10295 10053.4 9961 (1) -3.24 250 878.00 119.18

 G 8339 8360.6 8355 (1) 0.19 86 580.06 83.27
 H 9234 9243.6 9234 (2) 0.00 165 580.08 116.39
 I 8601 8658.6 8601 (1) 0.00 193 626.25 111.48
 J 8204 8204.0 8204 (5) 0.00 8 710.18 84.24

N100q10 A 11741 11762.2 11700 (1) -0.35 258 6619.31 280.75
 B 13066 13128.4 13003 (1) -0.48 236 6242.00 383.59
 C 13893 13975.4 13896 (1) 0.02 221 10274.80 400.09
 D 14253 14341.6 14257 (1) 0.03 279 11312.30 481.68
 E 11411 11416.4 11411 (2) 0.00 191 14003.20 576.32
 F 11644 11689.2 11635 (1) -0.08 297 5199.37 340.74
 G 12025 11983.0 11866 (1) -1.32 299 8573.25 326.39
 H 12818 12727.2 12673 (2) -1.13 144 7449.64 445.39
 I 14025 13929.0 13834 (1) -1.36 282 8952.98 479.24
 J 13293 13371.4 13222 (1) -0.53 244 5563.60 275.94

The results in Table 2 show an average improvement of 0.97% on the gap for 80 and 0.76% for
90. Moreover, for the instances with 100 vertices, we improved 7 out of 10 best known solutions.

This corresponds to a 0.52% gap improvement for the best known solutions, and 1.60% gap
improvement when comparing with [6] (all of the 10 solutions in [6] were improved). The average
shaking time (respectively improvement time) is 2122.79 seconds (153.44 seconds) for the group of 70
vertices and 8419.05 seconds (399.01 seconds) for the group of 100 vertices.

The computational results show that the proposed approach gives better results than the existing
heuristics. However its processing time is still large and it relies on a mathematical model. More
specifically, the shaking time increases from 45.39 seconds (0.15 seconds per iteration) for 20 vertices
to 8419.05 seconds (28.06 seconds per iteration) for 100 vertices. Note that the shaking time could be
reduced by increasing the parameter in the model. The solutions of several instances could be
improved by increasing the number of iterations as well.

5 Conclusions

In this paper, we have presented a hybrid ILS/VND heuristic for the 1-PDTSP, in which a new way of
generating feasible initial solutions using an assignment model is developed, and it is used as major
shaking procedure. We also implemented an improvement procedure which combines an auxiliary
shaking step and a VND local search. The relaxation of the vehicle capacity constraint is allowed
during the improvement procedure. A neighbor solution explored by the assignment model in the
major shaking step is considered as a k-position neighbor to the incumbent solution, where k is the
maximum number of customer positions different between two solutions. The improvement procedure
uses a vertex-exchange operator (swap) in the auxiliary shaking step, and edge-exchange operators (k-
Opt) in the VND local search.

The proposed approach is evaluated on small and medium benchmark instances with the smallest
vehicles capacities for which the problem is known to be harder. The experimental results show that

 GSC’ 2012, ARRAS – FRANCE June 21 - 22

our method gives almost all optimum solutions on the small instances (49 out of 50). We improved 7
out of 10 for the group of most difficult medium instances when comparing with the best known
solutions. However, the running time remains high, especially when considering the shaking step.

As future work, we are interested in reducing the running time of this, especially to address the
dynamic version of the problem where the stations’ availability can quickly evolve over the time.

On the other hand, a variant of the 1-PDTSP with demand splitting could be also investigated, in
which a customer request could be separated into several parts and each part is treated separately by
the vehicle. This could model situations where the imbalance at some stations exceeds the vehicle
capacity and several operations/visits should be done instead of a single one.

References

[1] H. Hernández-Pérez and J. J. Salazar-González. The one-commodity pickup-and-delivery
travelling salesman problem. In M. Jünger, G. Reinelt, and G. Rinaldi, editors, Combinatorial
Optimization-Eureka, You Shrink!, vol. 2570, pp. 89–104. Lecture Notes in Computer Science,
Springer, 2003.

[2] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia and G. Laporte. Static pickup and delivery
problems : a classification scheme and survey. TOP, vol. 15, pp. 1–31, 2007.

[3] M. I. Hosny and C. L. Mumford. Solving the one-commodity pickup and delivery problem using
an adaptive hybrid VNS/SA approach. In Proceedings of the 11th International Conference on
Parallel Problem Solving From Nature (PPSN2010), LNCS, Springer-Verlag, pp. 189-198,
2010.

[4] H.R. Lourenço, O. Martin and T. Stützle. A beginner’s introduction to Iterated Local Search. In
Proceeding of the 4th Metaheuristics International Conference, Porto, Portugal, pp. 1-11, 2001.

[5] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations
Research; 24: 1097–1100, 1997.

[6] H. Hernández-Pérez, I. Rodríguez-Martín and J. J. Salazar-González. A hybrid GRASP/VND
heuristic for the One-Commodity Pickup-and-Delivery Traveling Salesman Problem.
Computers & Operations Research, 36(5), pp. 1639-1645, 2008.

[7] H. Hernández-Pérez and J.J. Salazar-González. The one-commodity pickup and delivery
traveling salesman problem: Inequalities and algorithms. Networks, 50(4), 258–272, 2007.

[8] H. Hernández-Pérez and J. J. Salazar-González. A branch-and-cut algorithm for a traveling
salesman problem with pickup and delivery. Discrete Applied Mathematics, 145:126-139, 2004.

[9] H. Hernández-Pérez and J. J. Salazar-González. Heuristics for the one-commodity pickup-and-
delivery traveling salesman problem. Transportation Science, 38(2):245-255, 2004.

[10] M. Fischetti and A. Lodi. Local branching. Math. Programming 98, 23–47, 2003.

[11] Zhao F., Li S., Sun J. and Mei D. Genetic algorithm for the one-commodity pickupand-delivery
traveling salesman problem. Computers & Industrial Engineering 56(4), 1642–1648, 2009.

