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The vehicle routing problem

• One of the most
studied problems in OR

• Google Scholar:
• 780.000 entries
• 20.000 new entries
every year

• 10.000 on heuristics

• Huge practical
relevance
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Practical relevance
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Relevance

• A lot of extensions
• Time windows
• Pick up and delivery
• Arc routing
• …

• Integral part of many other problems
• Location–routing
• Inventory–routing
• School bus routing
• …

• All rely on effective algorithms for the canonical CVRP
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State of the art

• Use as many local search
(constructive) operators as
possible

• Either VNS or LNS
• Fit in a metaheuristic
framework

• This is your Unique
Selling Point

• But it really does not
matter all that much

• Beware of “Frankenstein”
algorithms
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Local search for the VRP

Operator Complexity Description

2-opt O(n2) Swap 2 edges
3-opt O(n3) Swap 3 edges
Insert / Relocate O(n2) Relocate a customer
Swap O(n2) Exchange two customers
Crossover O(n2) Exchange route ends
CROSS-exchange O(n4) Exchange any two customer

sequences

Power ∼ 1
Speed
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Local search operators
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State of the art

• Many algorithms with
more or less equivalent
performance

• Stuck at around 1000
customers (”very large
scale”)

• Larger problems exist and
smaller problems should
be solved more efficiently

• Can we go further?
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Heuristic performance
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Extra extra large scale vehicle routing — can we do it?
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Some fresh ideas

1. Develop a small set of powerful, complementary local
search operators

2. Learn the properties of good solutions and use this
knowledge

3. Focus the power of the heuristic to make it efficient
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Idea #1

A (simple yet efficient) heuristic based on
complementary local search operators
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A fresh look at local search

• Two ways to solve VRPs in the literature
• “Multiple neighborhood search”
• Large Neighborhood Search (i.e., “multiple constructive
heuristics”)

• General sentiment: “it does not hurt to try”
(i.e., implement a lot of operators)

However

• There is an overhead for every operator
• Many operators have overlapping domains
• Powerful operators tend to be slow
(complexity based on searching the entire operator space)
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Our heuristic: complementary local search operators

• One route: Lin Kernighan
• Two routes: CROSS exchange
• Many routes: Relocation Chain

Careful

• Each operator is very powerful
• Each operator is very complex
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One route: Lin Kernighan
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• Solves a TSP by edge exchanges (n-opt)
• Edge exchanges best restricted to nearest neighbors
• Routes in VRPs are generally smaller

• We can try more neighbors
• We can do steepest descent (instead of first-improving)
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Two routes: CROSS exchange

Ik

Jl

Jl

Ik

• Exchanges two sub-routes
• Complexity O(n4)
• Length of substrings best restricted
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Three routes: Relocation chain

c−1
c1

c+1

c2

c+2

• Chain of relocations
• Depth of chain best restricted
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Performance of neighborhoods
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Metaheuristic framework: guided local search

• Idea: penalize bad edges

cg(i, j) = c(i, j) + λp(i, j)L

• Alternate penalization and local search

Penalize Edge Local Search Penalize Edge Local Search

• Question: what is a “bad” edge?
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Idea #2

Learn the properties of good solutions

17



What makes a solution good?

+0.14% +2.03%
“near-optimal” “non-optimal”

Question
Is there a relationship between solution characteristics,
instance characteristics, and solution quality? 18



What makes a solution good?

+0.14% +2.03%
“near-optimal” “non-optimal”

Question
Can we tell whether a solution is good or not without looking
at the objective function value? 18



What makes a solution good?

Problem-specific information is rare ( ̸= intuition)
TSP VRP

?

Quotes

• “[…] make use of any problem-specific information that you
have.”

• “[…] the perturbation can incorporate as much problem-specific
information as the developer is willing to put into it.”

• “Exploiting problem-specific knowledge […] are key ingredients
for leading optimization algorithms.”
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Methodology

1 Random instance

2

Near-optimal solution (O) Non-optimal solution (N)

3
intersections 9
average width 5.4
… …

intersections 12
average width 6.3
… …

4 Train and predict O versus N

5 Extract rules
20



Instance generation

Table 1: Instance parameters for the different instance classes

Class Customers Depot Demand Routes
1 20-50 Center [1,1] 3-6
2 20-50 Center [1,10] 3-6
3 20-50 Edge [1,1] 3-6
4 20-50 Edge [1,10] 3-6
5 70-100 Center [1,1] 6-10
6 70-100 Center [1,10] 6-10
7 70-100 Edge [1,1] 6-10
8 70-100 Edge [1,10] 6-10
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Solution generation

“Near optimal” “Non optimal”
Own heuristic (see before) H1: weak version of own heuristic

H2: Modified Clarke-Wright
Very powerful Rather weak
0.20% gap on Augerat A 2% and 4% gap
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Intermezzo
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ABSTRACT: In this paper, we have proposed an algorithm that has been improved from the classical Clarke and Wright
savings algorithm (CW) to solve the capacitated vehicle routing problem. The main concept of our proposed algorithm is to
hybridize the CW with tournament and roulette wheel selections to determine a new and efficient algorithm. The objective is
to find the feasible solutions (or routes) to minimize travelling distances and number of routes. We have tested the proposed
algorithm with 84 problem instances and the numerical results indicate that our algorithm outperforms CW and the optimal
solution is obtained in 81% of all tested instances (68 out of 84). The average deviation between our solution and the optimal
one is always very low (0.14%).

KEYWORDS: heuristics, optimization, tournament selection, roulette wheel selection

INTRODUCTION

The capacitated vehicle routing problem (CVRP) was
initially introduced by Dantzig and Ramser1 in their
article on a truck dispatching problem and, conse-
quently, became one of the most important and widely
studied problems in the area of combinatorial opti-
mization. Not only is the travelling salesman problem
classified as nondeterministic polynomial time (NP)
hard2, but also the bin packing problem is a special
case of CVRP. Accordingly, the CVRP has been
concluded to be an NP-hard problem3–5. The basic
concept of CVRP is to find a feasible set of vehicle
routes that minimizes the total travelling distance
and/or the total number of vehicles used. For each
route, the vehicle departs from a given depot and
returns to the same depot after completing the service.
CVRP involves a single depot, a homogeneous fleet of
vehicles, and a set of customers who require delivery
of goods from the depot.

Since CVRP was first proposed in 19591, it has
received much attention from researchers and practi-
tioners. Therefore, numerous approaches and algo-
rithms have also been developed. First, an exact algo-
rithm, which is an algorithm that solves a problem to
optimality by computing the distance of every feasible
solution and then choosing a solution with minimum
distance, was reported. The approach consists of a

branch-and-bound algorithm6, a branch-and-cut algo-
rithm7–9, and a branch-and-cut-and-price algorithm10.
In these algorithms, CVRP instances involving more
than 100 customers can rarely be solved to optimality
due to a huge amount of computation time. Second,
a heuristic algorithm, which is an algorithm that
should find solutions among all feasible ones, com-
posed of savings algorithm11, sweep algorithm12, 13,
sequential insertion algorithm14, petal algorithm15, 16,
two-phase insertion17, cluster-first route-second algo-
rithm18, 2-petals algorithm19, k-opt heuristic20, Or-
exchanges21, and λ-interchanges22. These algorithms
usually find a feasible solution (near optimal) fast and
easily but they do not guarantee that the optimal solu-
tion will be found. Finally, a metaheuristic algorithm,
which is an iterative improvement approach by com-
bining a heuristic algorithm with intelligent ideas for
exploring and exploiting the search space, composed
of simulated annealing22, tabu search23, 24, genetic
algorithm25, 26, ant colony algorithm27, 28, memetic
algorithm29, 30, active-guided evolution strategies31,
honey bees mating optimization algorithm32, and par-
ticle swarm optimization algorithm33, 34. In these
algorithms, a good metaheuristic implementation can
provide efficiently near-optimal solutions in a reason-
able computation time.

The Clarke and Wright savings algorithm (CW)11

is the most widely applied heuristic for solving CVRP

www.scienceasia.org
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Intermezzo

Clarke–Wright algorithm for the VRP

• Create a separate route per customer
• Connect routes according to the largest possible savings
• Repeat while routes can be connected

Saving
s(i, j) = d(D, i) + d(D, j)− d(i, j)

“Improved” Clarke and Wright
Add some randomization (“GRASP”)→ unbelievably effective
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Abstract

In their paper “An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem,”
published in ScienceAsia (38, 3, 307–318, 2012), Pichpibul and Kawtummachai developed a simple stochastic
extension of the well-known Clarke and Wright savings heuristic for the capacitated vehicle routing problem.
Notwithstanding the simplicity of the heuristic, which they call the “improved Clarke and Wright savings
algorithm” (ICW), the reported results are among the best heuristics ever developed for this problem. Through
a careful reimplementation, we demonstrate that the results published in the paper could not have been
produced by the ICW heuristic. Studying the reasons how this paper could have passed the peer review
process to be published in an ISI-ranked journal, we have to conclude that the necessary conditions for a
thorough examination of a typical paper in the field of optimization are generally lacking. We investigate how
this can be improved and come to the conclusion that disclosing source code to reviewers should become a
prerequisite for publication.

Keywords: optimization; combinatorial optimization; heuristics

1. Introduction

The capacitated vehicle routing problem (CVRP) is defined on a complete, undirected graph with
n + 1 nodes, one node representing the depot and the n remaining nodes a set of customers with
known demand. The cost of traveling between any pair of customers, or between any customer and
the depot, is also given in a distance matrix, as is the (uniform) capacity of a fleet of vehicles. The
objective of the CVRP is to define a set of routes with minimal total cost such that each vehicle
performs at most one route, the total demand in each route does not exceed the vehicle capacity,
and all customers are visited exactly once.

The CVRP is among the most studied problems in the field of Operations Research, and a very
large number of algorithms have been developed to solve it (see, e.g., Toth and Vigo, 2014, for

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.
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Methodology

1 Random instance

2

Near-optimal solution (O) Non-optimal solution (N)

3
intersections 9
average width 5.4
… …

intersections 12
average width 6.3
… …

4 Train and predict O versus N

5 Extract rules
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Solution metrics

S1 - Average number of intersections per customer
|R|−1∑
i=1

|R|∑
j=i+1

I(ri, rj)

N
S2 - Longest distance between two connected customers, per

route ∑
r∈R

max
i∈{1,...,|r|−1}

d(nri ,n
r
i+1)

|R|
S3 - Average distance between depot to directly-connected

customers ∑
r∈R

(
d(D,nr1) + d(nr|r|,D)

)
2|R|
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Solution metrics

S4 - Average distance between routes (their centers of gravity)∑
r1∈R

∑
r2∈R\r1

d(Gr1 ,Gr2)

|R| · (|R| − 1)
S5 - Average width per route∑

r∈R

(
max

i∈{1,...,|r|}
d(LGr ,ni)− min

i∈{1,...,|r|}
d(LGr ,ni)

)
|R|

S6 - Average span in radian per route∑
r∈R

max
i,j∈{1,...,|r|}

rad(nri ,n
r
j )

|R|
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Solution metrics

S7 - Average compactness per route, measured by width∑
r∈R

|r|∑
i=1

(
d(LGr ,ni)

)+
N

S8 - Average compactness per route, measured by radian∑
r∈R

|r|∑
i=1
rad(Gr,ni)

N
S9 - Average depth per route∑

r∈R
max

i∈{1,...,|r|}
d(nri ,D)

|R|
S10 - Standard deviation of the number of customers per route√√√√∑

r∈R
(|r| − N

|R|)
2

|R|
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Solution metrics

• #Intersections
• Longest Edge 
• First Edges
• Inter-Route Distance
• #Customers

Metrics

• Properties of solutions that might influence quality
• Some creativity is required
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Solution metrics

• Depth
• Width
• Angle Variation
• Compactness

Metrics

• Properties of solutions that might influence quality
• Some creativity is required

26



Normalization is necessary

Near-optimal solution Non-optimal solution
In
st
an
ce
1

Average Width: 295 Average Width: 323

In
st
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2

Average Width: 204 Average Width: 234 27



Instance characteristics

I1 - Number of customers
I2 - Minimum number of routes
I3 - Degree of capacity utilisation
I4 - Average distance between each pair of customers
I5 - Standard deviation of the pairwise distance between

customers
I6 - Average distance from customers to the depot
I7 - Standard deviation of the distance from customers to the

depot
I8 - Standard deviation of the radians of customers towards

the depot

28



Methodology

1 Random instance

2

Near-optimal solution (O) Non-optimal solution (N)
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29



Data mining techniques

Support Vector Machines (SVM)
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Data mining

Table 2: Prediction accuracies with linear SVM for each dataset

2% gap 4% gap

#data points H1 H2 H1 H2

20
-5
0
cu
st
. Class 1 10.000 65% 62% 76% 64%

Class 2 10.000 67% 61% 77% 63%
Class 3 10.000 67% 68% 76% 75%
Class 4 10.000 66% 65% 74% 71%

70
-1
00

cu
st
. Class 5 2.000 81% 81% 89% 89%

Class 6 2.000 80% 80% 89% 89%
Class 7 2.000 85% 85% 90% 91%
Class 8 2.000 81% 82% 88% 89%
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What causes the prediction accuracy

Table 3: Solution metrics with an individual prediction accuracy of
higher than 55% per instance class (largest per class in bold)

2% gap 4% gap
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Class 1 58 57 56 56 56 59 57 61
Class 2 57 57 57 56 56 56 62
Class 3 58 60 60 57 61 56 65 59 64 60
Class 4 57 58 58 56 59 56 62 57 62 61

Class 5 62 67 68 67 67 60 71 78 77 79 76 59
Class 6 57 62 65 66 68 70 60 67 74 73 74 75
Class 7 66 57 60 79 65 75 65 71 66 84 72 80 72
Class 8 64 72 61 70 66 68 58 79 67 77 72

Most effect: S1 (intersections), S3 (edges from depot), S5
(width), S6 (width in radian), S7 (compactness), S8
(compactness by radian)
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Metaheuristic framework: guided local search

• Idea: penalize bad edges

cg(i, j) = c(i, j) + λp(i, j)L

• Alternate penalization and local search

Penalize Edge Local Search Penalize Edge Local Search

• Question: what is a “bad” edge?
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Idea #3

Focus the power of the heuristic to make it
efficient
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Badness of an edge

w(i, j)
d(i, j)

c(i, j)

i

j
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Penalization criterion
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Linearizing the performance

3

2

2

1

1

2

3
• Try to relocate next to
each customer: O(n2)

• Try to relocate next to
closest a customers:
O(a× n)

Heuristic pruning
Can we restrict a without hurting performance?
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Heuristic pruning
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Lin Kernighan (one route)

• Already very efficient
• Restrict to 10 nearest neighbors
• Restrict to 4-opt
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Heuristic pruning

Ik

Jl

Jl

Ik

CROSS exchange (two routes)

• Start from most penalized
edge

• Restrict to 30 nearest
neighbors

• Restrict size of subroute to
100
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Heuristic pruning

c−1
c1

c+1

c2

c+2

Relocation chain (>two
routes)

• Start from most penalized
edge

• Restrict to 30 nearest
neighbors

• Restrict size of chain to 2
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Effect of pruning tightness
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Closeness of customers in high-quality solutions
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Only distances between close neighbors need to be loaded
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Our algorithm

1. Construct an initial solution (Clarke–Wright)
2. Repeat until stopping criterion

2.1 Repeat (GLS)
2.1.1 Penalize worst edge w

largest value of “badness”: b =
f(w, c,d, · · · )

1+ p

2.1.2 Apply LS starting from w using cg(.) as evaluation function
2.2 Global optimization: apply LS on all routes that where

changed by GLS, using c(.) as evaluation function

Important note
Completely deterministic
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Movie Time
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Results
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Comparison to other algorithms
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Comparison to other algorithms
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Results on XXL instances

Instance GVNS AGS (short runtime) AGS (long runtime)

Value Gap Time Value Gap Time Value Gap Time

W (7,798) 4,559,986 7.37 34.5 4,294,216 1.12 7.8 4,246,802 0.00 39.0
E (9,516) 4,757,566 4.17 83.9 4,639,775 1.59 9.5 4,567,080 0.00 47.5
S (8,454) 3,333,696 3.97 56.2 3,276,189 2.18 8.5 3,206,380 0.00 42.5
M (10,217) 3,170,932 4.35 77.6 3,064,272 0.84 10.2 3,038,828 0,00 51.0

R3 (3,000) 186,220 1.87 4.8 183,184 0.21 3.0 182,808 0.00 15.0
R6 (6,000) 352,702 1.49 24.4 348,225 0.20 6.0 347,533 0.00 30.0
R9 (9,000) 517,443 1.05 57.7 512,530 0.09 9.0 512,051 0.00 45.0
R12 (12,000) 680,833 1.12 108.4 674,732 0.22 12.0 673,260 0.00 60.0

Average 3.17 55.8 0.80 8.3 0.00 41.3
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Solutions

1 1 1
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30.000 customers

Figure 1: Flanders

1
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An unexpected benchmark

from: Keld Helsgaun <keld@ruc.dk>
[…]

My aim was to see how close, given plenty of time, my LKH-3
solver could get to the best solutions found by your
extremely fast VRP solver. Now, after more than a month of
computation, LKH-3 has been able to find tours that are from
0.4 to 1.1 percent shorter than yours. I attach a table with the
results together with the solutions found.

[…]
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An unexpected benchmark

 1 

Results for Belgium instances (CVRP) 
Keld Helsgaun, February 16, 2018 

 
 

Instance n m BKS LKH-3 Gap (%) 
L1 3000 203 195239 194381 -0.439 
L2 4000 46 114833 113484 -1.175 
A1 6000 343 483606 481338 -0.469 
A2 7000 120 299398 297478 -0.641 
G1 10000 485 476489 474164 -0.488 
G2 11000 110 267935 265763 -0.811 
B1 15000 512 512089 509457 -0.514 
B2 16000 182 360760 357382 -0.936 
F1 20000 684 7321847 7300772 -0.288 
F2 30000 256 4526789 4499422 -0.605 

 
 
 

47



Conclusions
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Conclusions

Designing heuristics the modern way

• Use powerful complementary local search heuristics
• Make them efficient using knowledge on the properties of
good solutions

• Make them even more efficient using heavy pruning

Challenge
Works for VRP, what about other problems?
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