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Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!
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Outline

1 Language

2 Variables

3 Constraints

4 Modeling
Ex: Golomb Ruler
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Constraint Optimization Problem

Variables: with finite discrete domains (e.g. x ∈ {2, 3, 5, 7, 11, 13}, y ∈ [0, 100000])

Constraints: any relation between variables (e.g. x = (
√
y mod 15))

Objective: distinguished variable to minimize/maximize
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Map Coloring

xf

D(xf ) : blue
green

xs

D(xs) : blue
red

xi

D(xi ) : blue
red

xe

D(xe) : blue
yellow
red
green

6=
6=

6=

6=
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Map Coloring (Numberjack)

from Numberjack import *

france = Variable([’blue’,’green’], ’france’)

switzerland = Variable([’blue’,’red’], ’switzerland’)

spain = Variable([’blue’,’yellow’,’red’,’green’], ’spain’)

italy = Variable([’blue’,’red’], ’italy’)

model = Model(

france != switzerland,

france != italy,

france != spain,

italy != switzerland

)

solver = model.load(’Mistral2’)

if solver.solve():

for var in [france, switzerland, spain, italy]:

print var.name(), ’in’, var.get_value()
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Map Coloring (Choco)

static final String[] colorname = {"red", "blue", "green", "yellow"};

static final Map<String, Integer> colorindex = new HashMap<String, Integer>();

public static void main(String[] args) {

for(int i=0; i<colorname.length; ++i) colorindex.put(colorname[i], i);

Model model = new Model("Map coloring example");

IntVar france = model.intVar("france", new int[]{colorindex.get("blue"), colorindex.get("green")});

IntVar switzerland = model.intVar("switzerland", new int[]{colorindex.get("blue"), colorindex.get("red")});

IntVar spain = model.intVar("spain", new int[]{colorindex.get("blue"), colorindex.get("yellow"), colorindex.get("red"), colorindex.get("green")});

IntVar italy = model.intVar("italy", new int[]{colorindex.get("blue"), colorindex.get("red")});

model.arithm(france, "!=", switzerland).post();

model.arithm(france, "!=", italy).post();

model.arithm(france, "!=", spain).post();

model.arithm(italy, "!=", switzerland).post();

if(model.getSolver().solve()){

for(IntVar x : new IntVar[]{france, switzerland, spain, italy})

System.out.printf("%s in %s\n", x.getName(), color_name[x.getValue()]);

}

}
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Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above
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Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46



Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46



Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?

I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46



Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46



Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46



Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46



Choice of representation

xf xs

xixe

6= 6=

6=

6=

6==xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult
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The best variable viewpoint is the one that...

...induces the smallest search tree

...induces the “best” set of constraints

What is a good constraint set?
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Combining constraints (logically)

Most logic operators

I can be used as a relation (x 6= y)...
I or as a predicate ((x 6= y) =⇒ y ≤ 12)

Two different constraints: x 6= y and (x 6= y) ⇐⇒ z (reification)

(x 6= y) =⇒ y ≤ 12 encoded as (x 6= y) ⇐⇒ z

z =⇒ (y ≤ 12)

Which you can write (x 6= y) =⇒ y ≤ 12 (and let the system insert extra variables)
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Combining constraints (functionally)

There are also function operators that must be combined similarly

I For instance (|x − y | ∗ z) ≤ (z + 12)

(|x − y | ∗ z) ≤ (z + 12) encoded as (x − y) = a1

|a1| = a2

a2 ∗ z = a3

z + 12 = a4

a3 ≤ a4
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Expression Tree

Constraints - Root of the expression tree

C1 = (X+Y < 5) | (X+3 < Y)

C2 = AllDiff([x,y,z])

C3 = Sum([a,b,c,d]) >= e

Predicates & functions - Internal nodes

P = X+Y # arythmetic value

Q = X+3 <= Y # truth (logic) value

Variables - Leaves of the expression tree

X = Variable(0,10)

X = Variable([1,3,5,7])
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XKCD Knapsack
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XKCD Knapsack

from Numberjack import *

price = [215, 275, 335, 355, 420, 580]

appetizers = ["Mixed Fruit", "French Fries", "Side Salad",

"Hot Wings", "Mozzarella Sticks", "Sample Plate"]

total = 1505

num_appetizers = len(appetizers)

quantities = [Variable(0, 1505/price[i], ’#’+appetizers[i])

for i in range(num_appetizers)]

model = Model(

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

)

solver = model.load(’Mistral2’)

solver.startNewSearch()

while solver.getNextSolution() == SAT:

print "\nSOLUTION:\n", "\n".join("%s x %s ($%.2lf)" % (quantities[i], \

appetizers[i], price[i] / 100.0) for i in xrange(num_appetizers))
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XKCD Knapsack

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

=

∑
total

∗ . . . ∗

q1 p1 qn pn
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Solution

Solution 1:

7 × Mixed Fruit ($2.15)
0 × French Fries ($2.75)
0 × Side Salad ($3.35)
0 × Hot Wings ($3.55)
0 × Mozzarella Sticks ($4.20)
0 × Sample Plate ($5.80)

Solution 2:

1 × Mixed Fruit ($2.15)
0 × French Fries ($2.75)
0 × Side Salad ($3.35)
2 × Hot Wings ($3.55)
0 × Mozzarella Sticks ($4.20)
1 × Sample Plate ($5.80)
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Global constraints

CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent(x1, . . . , xn) ⇐⇒ ∀1 ≤ i < j ≤ n xi 6= xj

x̄ = 3, 5, 1, 2, 7 satisfies AllDifferent
x̄ = 3, 5, 1, 2, 5 does not satisfy AllDifferent

Element

Element(x0, . . . , xn−1, y , z) ⇐⇒ xy = z

x̄ = 3, 5, 1, 2, 5, y = 1, z = 5 satisfies Element
x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element
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x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element
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Map Coloring

xf

D(xf ) : blue
green

xs

D(xs) : blue
red

xi

D(xi ) : blue
red

xe

D(xe) : blue
yellow
red
green

6=
6=

6=

6=

Alldifferent
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Constraint solver

Search

Develop a search tree (depth first).

Select a variable x , a value v in its domain and branch on x = v or x 6= v

Inference

At every node of the tree, the domains of the variables are reduced

Every constraint makes local deductions

Consistent iff every value of every variable is in a support

Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation
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Example: binary constraint

What inference can the inequality xf 6= xe make?

A support: a value v ∈ D(xf ) and a value w ∈ D(xe) with v 6= w

Propagation of xf 6= xe

As long as the domain D(xf ) has two distinct values, then xe could take any value

xf ∈ {b, r}, xe ∈ {b, r, g}: there is no correct domain reduction

If D(xf ) = {v} then xe cannot take the value v

xf ∈ {b}, xe ∈ {b, r, g} =⇒ xf ∈ {b}, xe ∈ {r, g}
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Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {

b,

r}

xe ∈ {

b,

r, g, y} xi ∈ {

b, r

}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b
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Example: global constraint

xf xs

xi

6=

6=

6=

xf ∈ {b, g}
xs ∈ {b, r}
xi ∈ {b, r}

Every inequality is consistent

AllDifferent is not consistent!

Propagation of AllDifferent(x̄)

A support is a perfect matching in the graph

The edge (xf , b) does not belong to any perfect matching

AllDifferent(xf , xs , xi ) is consistent for xf ∈ {g} xs ∈ {b, r}
xi ∈ {b, r}

xf

xs

xi

g

b

r
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Search Tree (AllDifferent)

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 28 / 46



Search Tree (AllDifferent)

xf ∈ {

b,

g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 28 / 46



Search Tree (AllDifferent)

xf ∈ {

b,

g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 28 / 46



Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)
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Outline

1 Language

2 Variables

3 Constraints

4 Modeling
Ex: Golomb Ruler
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The art of modeling

Techniques to strenghthen propagation

Common sub-expressions

Global constraints

Implied constraints

Symmetry breaking

Dominance
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Golomb Ruler

Problem definition

Place m marks on a ruler

Distance between each pair of marks is different

Goal is to minimise the size of the ruler

Proposed by Sidon [1932] then independently by Golomb and Babcock

0 1 4 6

1 3 2

4

5

6
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A First Model (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

distance = [Abs(marks[i] - marks[j]) for i in range(1, m) for j in range(i)]

model = Model(

Minimise(Max(marks)), # objective function

[m1 != m2 for m1,m2 in pair_of(marks)],

[d1 != d2 for d1,d2 in pair_of(distance)]

)

solver = model.load(’Mistral2’, marks)

if solver.solve():

print marks, [d.get_value() for d in distance]
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A First Model (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

int k = 0;

for(int i=0; i<m; ++i) {

for(int j=i+1; j<m; ++j) {

model.distance(marks[i], marks[j], "=", distance[k++]).post();

model.arithm(marks[i], "!=", marks[j]).post(); }}

for(int i=0; i<distance.length; ++i)

for(int j=i+1; j<distance.length; ++j)

model.arithm(distance[i], "!=", distance[j]).post();

IntVar objective = model.intVar("obj", 0, n);

model.max(objective, marks).post();

model.setObjective(Model.MINIMIZE, objective);
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Branch & Bound

An objective variable

model.setObjective(Model.MINIMIZE, objective);

The upper bound is updated when a new solution is found

The lower bound is maintained via constraint propagation

model.max(objective, marks).post();

Different models may entail different lower bounds for the same objective function
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Global Constraints (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

distance = [Abs(marks[i] - marks[j]) for i in range(m-1) for j in range(i+1,m)]

model = Model(

Minimise(Max(marks)), # objective function

AllDiff(marks),

AllDiff(distance)

)

solver = model.load(’Mistral2’, marks)

if solver.solve():

print marks, [d.get_value() for d in distance]
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Global Constraints (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

int k = 0;

for(int i=0; i<m; ++i)

for(int j=i+1; j<m; ++j)

model.distance(marks[i], marks[j], "=", distance[k++]).post();

model.allDifferent(marks).post();

model.allDifferent(distance).post();

IntVar objective = model.intVar("obj", 0, n);

model.max(objective, marks).post();

model.setObjective(Model.MINIMIZE, objective);
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Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]
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Symmetry breaking (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

distance = [marks[j] - marks[i] for i in range(m-1) for j in range(i+1,m)]

model = Model(

Minimise(marks[-1]), # objective function

[marks[i-1] < marks[i] for i in range(1, m)],

marks[0] == 0,

distance[0] < distance[-1],

AllDiff(distance)

)

solver = model.load(’Mistral2’, marks)

solver.setHeuristic(’MinDomainMinVal’);

if solver.solve():

print marks, [d.get_value() for d in distance]
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Symmetry breaking (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

int k = 0;

for(int i=0; i<m-1; ++i) {

model.arithm(marks[i], "<", marks[i+1]).post();

for(int j=i+1; j<m; ++j)

model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();

model.arithm(marks[0], "=", 0).post();

model.arithm(distance[0], "<", distance[distance.length-1]).post();

}

model.allDifferent(distance).post();

model.setObjective(Model.MINIMIZE, marks[m-1]);
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Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions

, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)
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Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3≥ 6

1 2 3

≤ marks[m-1] - 4≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different

distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2
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Implied Constraints: Golomb Ruler

Implied constraints

I distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2
I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

How do we know that these constraints are useful (improving constraint propagation)

We need to combine the reasoning of two constraints (AllDifferent(distance)
and distance[i,j] =

∑j−1
k=i distance[k,k+1])

Domain reduction is not sufficient to “communicate” between the two constraints

I The implied constraints reduce the domains at the root node

In doubt, just try!
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Implied Constraints (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

dmap = dict([((i,j), marks[j] - marks[i]) for i in range(m-1) for j in range(i+1,m)])

distance = [dmap[(i,j)] for i in range(m-1) for j in range(i+1,m)]

lbs = [(j - i) * (j - i + 1) / 2 for i in range(m-1) for j in range(i+1,m)]

ubs = [marks[-1] - (m - 1 - j + i) * (m - j + i) / 2 for i in range(m-1) for j in range(i+1,m)]

model = Model(

Minimise(marks[-1]), # objective function

[marks[i-1] < marks[i] for i in range(1, m)],

marks[0] == 0,

distance[0] < distance[-1],

AllDiff(distance),

[d >= l for d,l in zip(distance, lbs)],

[d <= u for d,u in zip(distance, ubs)],

[dmap[(i,j)] == dmap[(i,j-1)] + dmap[(j-1,j)] for i in range(m-2) for j in range(i+2,m)]

)

solver = model.load(’Mistral2’,marks)

if solver.solve():

print marks, [d.get_value() for d in distance]
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Implied Constraints (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

% IntVar[][] dmap = new IntVar[m][m];

int k = 0;

for(int i=0; i<m-1; ++i) {

model.arithm(marks[i], "<", marks[i+1]).post();

for(int j=i+1; j<m; ++j) {

dmap[i][j] = distance[k];

model.arithm(distance[k], "<=", marks[m - 1], "-", ((m - 1 - j + i) * (m - j + i)) / 2).post();

model.arithm(distance[k], ">=", (j - i) * (j - i + 1) / 2).post();

model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();

}

model.arithm(marks[0], "=", 0).post();

model.arithm(distance[0], "<", distance[distance.length-1]).post();

}

% for(int i=0; i<m-2; ++i)

% for(int j=i+2; j<m; ++j)

% model.arithm(dmap[i][j], "=", dmap[i][j-1], "+", dmap[j-1][j]).post();

model.allDifferent(distance).post();

model.setObjective(Model.MINIMIZE, marks[m-1]);
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Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking
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Master class on hybrid optimisation Toulouse
June 4th and 5th

Pierre Bonami (Université d’Aix-Marseille) Mixed-Integer Linear and Nonlinear
Programming Methods

Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete
Optimization, Constraint programming, and Integer Programming

John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming /
Constraint Programming Methods

Paul Shaw (IBM Research) Combinations of local search and constraint
programming

Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT
solvers

Free registration, students’ accommodation covered!
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