

Modeling and Solving Constraint Problems

Emmanuel Hebrard

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

• Introduction to constraint programming (no pre-requisite)

- Introduction to constraint programming (no pre-requisite)
 - Or almost none

- Introduction to constraint programming (no pre-requisite)
 - Or almost none
 - Constraint programming = combinatorial branch & bound plus a lot of jargon

- Introduction to constraint programming (no pre-requisite)
 - Or almost none
 - Constraint programming = combinatorial branch & bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
 - Notions of model and solver

- Introduction to constraint programming (no pre-requisite)
 - Or almost none
 - Constraint programming = combinatorial branch & bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
 - Notions of model and solver
 - I will not talk about user-defined propagator

- Introduction to constraint programming (no pre-requisite)
 - Or almost none
 - Constraint programming = combinatorial branch & bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
 - Notions of model and solver
 - I will not talk about user-defined propagator
 - I will not talk about search strategies (though there are things to do at the language level)

- Introduction to constraint programming (no pre-requisite)
 - Or almost none
 - Constraint programming = combinatorial branch & bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
 - Notions of model and solver
 - I will not talk about user-defined propagator
 - I will not talk about search strategies (though there are things to do at the language level)
- The minimum about solving methods to allow for clever modeling

- Introduction to constraint programming (no pre-requisite)
 - Or almost none
 - Constraint programming = combinatorial branch & bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
 - Notions of model and solver
 - I will not talk about user-defined propagator
 - I will not talk about search strategies (though there are things to do at the language level)
- The minimum about solving methods to allow for clever modeling
 - It turns out, it is already a lot!

Outline

2 Variables

3 Constraints

Outline

1 Language

2 Variables

3 Constraints

• Variables: with finite discrete domains (e.g. $x \in \{2, 3, 5, 7, 11, 13\}, y \in [0, 100000]$)

- Variables: with finite discrete domains (e.g. $x \in \{2, 3, 5, 7, 11, 13\}, y \in [0, 100000]$)
- Constraints: any relation between variables (e.g. $x = (\sqrt{y} \mod 15))$

- Variables: with finite discrete domains (e.g. $x \in \{2, 3, 5, 7, 11, 13\}, y \in [0, 100000]$)
- Constraints: any relation between variables (e.g. $x = (\sqrt{y} \mod 15))$
- Objective: distinguished variable to minimize/maximize

Language

Map Coloring

Map Coloring

Language

from Numberjack import *

Map Coloring (Numberjack)

```
france = Variable(['blue', 'green'], 'france')
switzerland = Variable(['blue'.'red']. 'switzerland')
spain = Variable(['blue', 'yellow', 'red', 'green'], 'spain')
italy = Variable(['blue', 'red'], 'italy')
model = Model(
    france != switzerland.
    france != italy,
    france != spain,
    italy != switzerland
solver = model.load('Mistral2')
if solver.solve():
    for var in [france, switzerland, spain, italy]:
        print var.name(), 'in', var.get_value()
```


Map Coloring (Choco)

```
static final String[] colorname = {"red", "blue", "green", "yellow"};
static final Map<String, Integer> colorindex = new HashMap<String, Integer>();
public static void main(String[] args) {
        for(int i=0; i<colorname.length; ++i) colorindex.put(colorname[i], i);</pre>
        Model model = new Model("Map coloring example");
        IntVar france = model.intVar("france", new int[]{colorindex.get("blue"), colorindex.get("green")});
        IntVar switzerland = model.intVar("switzerland", new int[]{colorindex.get("blue"), colorindex.get("red")
        IntVar spain = model.intVar("spain", new int[]{colorindex.get("blue"), colorindex.get("vellow"), colori
        IntVar italy = model.intVar("italy", new int[]{colorindex.get("blue"), colorindex.get("red")});
        model.arithm(france, "!=", switzerland).post();
       model.arithm(france, "!=", italy).post();
        model.arithm(france, "!=", spain).post();
        model.arithm(italy, "!=", switzerland).post();
        if(model.getSolver().solve()){
               for(IntVar x : new IntVar[]{france, switzerland, spain, italy})
                        System.out.printf("%s in %s\n", x.getName(), color_name[x.getValue()]);
        }
```


● Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
 - Among the constraints defined in the language/toolkit

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
 - Among the constraints defined in the language/toolkit (or user-defined!)

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
 - Among the constraints defined in the language/toolkit (or user-defined!)
 - ▶ Linear constraints, arithmetic and logic operators $(=, \neq, \leq, >, \lor, \land, \implies, \%, \times, +, /, \ldots)$

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
 - Among the constraints defined in the language/toolkit (or user-defined!)
 - ▶ Linear constraints, arithmetic and logic operators $(=, \neq, \leq, >, \lor, \land, \implies, \%, \times, +, /, ...)$
 - Some keyworded relations AllDifferent, Element, etc.

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
 - Among the constraints defined in the language/toolkit (or user-defined!)
 - ► Linear constraints, arithmetic and logic operators (=, ≠, ≤, >, ∨, ∧, ⇒, %, ×, +, /,...)
 - Some keyworded relations AllDifferent, Element, etc.
 - Any Expression tree of the above

Outline

3 Constraints

• The same problem might be mapped to many models

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
 - ▶ TSP: $x_{ij} \leftrightarrow$ do we use arc (i, j)? or $x_i \leftrightarrow$ what it the *i*-th visited city?

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
 - ▶ TSP: $x_{ij} \leftrightarrow$ do we use arc (i, j)? or $x_i \leftrightarrow$ what it the *i*-th visited city?
 - Constraints follow from the choice of variable viewpoint

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
 - ▶ TSP: $x_{ij} \leftrightarrow$ do we use arc (i, j)? or $x_i \leftrightarrow$ what it the *i*-th visited city?
 - Constraints follow from the choice of variable viewpoint
- Sometimes the best choice is clear, but not always

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
 - ▶ TSP: $x_{ij} \leftrightarrow$ do we use arc (i, j)? or $x_i \leftrightarrow$ what it the *i*-th visited city?
 - Constraints follow from the choice of variable viewpoint
- Sometimes the best choice is clear, but not always
- Consider the graph coloring example

Variables

• Zykov recurrence [Zykov 49]: take a non-edge *e*, *s*. In the optimal coloring:

Variables

- Zykov recurrence [Zykov 49]: take a non-edge *e*, *s*. In the optimal coloring:
 - either e and s take a different color, so adding the edge would not hurt

Variables

- Zykov recurrence [Zykov 49]: take a non-edge *e*, *s*. In the optimal coloring:
 - either e and s take a different color, so adding the edge would not hurt
 - or e and s take the same color, so merging them (adding an equality constraint) would not hurt

- Zykov recurrence [Zykov 49]: take a non-edge *e*, *s*. In the optimal coloring:
 - either e and s take a different color, so adding the edge would not hurt
 - or e and s take the same color, so merging them (adding an equality constraint) would not hurt
- Instead of assigning colors to nodes, we can assign {=, ≠} to non-edges

- Zykov recurrence [Zykov 49]: take a non-edge *e*, *s*. In the optimal coloring:
 - either e and s take a different color, so adding the edge would not hurt
 - or e and s take the same color, so merging them (adding an equality constraint) would not hurt
- Instead of assigning colors to nodes, we can assign {=, ≠} to non-edges
- No color symmetry anymore!

- Zykov recurrence [Zykov 49]: take a non-edge *e*, *s*. In the optimal coloring:
 - either e and s take a different color, so adding the edge would not hurt
 - or e and s take the same color, so merging them (adding an equality constraint) would not hurt
- Instead of assigning colors to nodes, we can assign {=, ≠} to non-edges
- No color symmetry anymore!
- But stating the constraints is difficult

• ...induces the smallest search tree

- ...induces the smallest search tree
- ...induces the "best" set of constraints

- ...induces the smallest search tree
- ...induces the "best" set of constraints

What is a good constraint set?

Outline

Language

Variables

Constraints

- Expression tree
- Global constraints
- Constraint solving

Modeling

- Most logic operators
 - can be used as a relation $(x \neq y)$

Most logic operators

- can be used as a relation $(x \neq y)...$
- or as a predicate $((x \neq y) \implies y \leq 12)$

- Most logic operators
 - can be used as a relation $(x \neq y)...$
 - or as a predicate $((x \neq y) \implies y \leq 12)$
- Two different constraints: $x \neq y$ and $(x \neq y) \iff z$ (reification)

- Most logic operators
 - can be used as a relation $(x \neq y)...$
 - or as a predicate $((x \neq y) \implies y \leq 12)$
- Two different constraints: $x \neq y$ and $(x \neq y) \iff z$ (reification)

$$(x \neq y) \implies y \le 12$$
 encoded as $(x \neq y) \iff z$
 $z \implies (y \le 12)$

• Which you can write $(x \neq y) \implies y \leq 12$ (and let the system insert extra variables)

Combining constraints (functionally)

Combining constraints (functionally)

- There are also function operators that must be combined similarly
 - For instance $(|x y| * z) \le (z + 12)$

$$(|x - y| * z) \le (z + 12) \quad \text{encoded as} \quad (x - y) = a_1$$
$$|a_1| = a_2$$
$$a_2 * z = a_3$$
$$z + 12 = a_4$$
$$a_3 \le a_4$$

Expression Tree

Constraints - Root of the expression tree

C1 = (X+Y < 5) | (X+3 < Y) C2 = AllDiff([x,y,z]) C3 = Sum([a,b,c,d]) >= e

Predicates & functions - Internal nodes

Ρ	= X + Y	#	ary thmetic	value	

Q = X+3 <= Y # truth (logic) value

XKCD Knapsack

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

from Numberjack import *

XKCD Knapsack

```
price = [215, 275, 335, 355, 420, 580]
appetizers = ["Mixed Fruit", "French Fries", "Side Salad",
              "Hot Wings", "Mozzarella Sticks", "Sample Plate"]
total = 1505
num_appetizers = len(appetizers)
quantities = [Variable(0, 1505/price[i], '#'+appetizers[i])
              for i in range(num_appetizers)]
model = Model(
    Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total
solver = model.load('Mistral2')
solver.startNewSearch()
while solver.getNextSolution() == SAT:
    print "\nSOLUTION:\n", "\n".join("%s x %s ($%.21f)" % (quantities[i], \
        appetizers[i], price[i] / 100.0) for i in xrange(num_appetizers))
```


XKCD Knapsack

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

XKCD Knapsack

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

Solution

• Solution 1:

7	×	Mixed Fruit	(\$2.15)
0	×	French Fries	(\$2.75)
0	×	Side Salad	(\$3.35)
0	×	Hot Wings	(\$3.55)
0	×	Mozzarella Sticks	(\$4.20)
0	×	Sample Plate	(\$5.80)

• Solution 2:

1	×	Mixed Fruit	(\$2.15)
0	×	French Fries	(\$2.75)
0	×	Side Salad	(\$3.35)
2	×	Hot Wings	(\$3.55)
0	\times	Mozzarella Sticks	(\$4.20)
1	×	Sample Plate	(\$5.80)

• CP languages contain a number of keywords for specific relations on variables

• CP languages contain a number of keywords for specific relations on variables

AllDifferent

 $AllDifferent(x_1, \ldots, x_n) \iff \forall 1 \le i < j \le n \ x_i \ne x_i$

• CP languages contain a number of keywords for specific relations on variables

AllDifferent

$$\textit{AllDifferent}(x_1, \dots, x_n) \iff \forall 1 \le i < j \le n \; x_i \ne x_j$$

 $\bar{x} = 3, 5, 1, 2, 7$ satisfies AllDifferent $\bar{x} = 3, 5, 1, 2, 5$ does not satisfy AllDifferent

• CP languages contain a number of keywords for specific relations on variables

AllDifferent

$$\textit{AllDifferent}(x_1, \dots, x_n) \iff \forall 1 \le i < j \le n \; x_i \ne x_j$$

 $\bar{x} = 3, 5, 1, 2, 7$ satisfies AllDifferent $\bar{x} = 3, 5, 1, 2, 5$ does not satisfy AllDifferent

Element

$$Element(x_0, \ldots, x_{n-1}, y, z) \iff x_y = z$$

• CP languages contain a number of keywords for specific relations on variables

AllDifferent

$$\textit{AllDifferent}(x_1, \dots, x_n) \iff \forall 1 \le i < j \le n \; x_i \ne x_j$$

 $\bar{x} = 3, 5, 1, 2, 7$ satisfies AllDifferent $\bar{x} = 3, 5, 1, 2, 5$ does not satisfy AllDifferent

Element

$$Element(x_0,\ldots,x_{n-1},y,z) \iff x_y = z$$

 $\bar{x} = 3, 5, 1, 2, 5, y = 1, z = 5$ satisfies Element $\bar{x} = 3, 5, 1, 2, 5, y = 2, z = 5$ does not satisfy Element

Map Coloring

Map Coloring

Search

Develop a search tree (depth first).

• Select a variable x, a value v in its domain and branch on x = v or $x \neq v$

Search

Develop a search tree (depth first).

• Select a variable x, a value v in its domain and branch on x = v or $x \neq v$

Inference

At every node of the tree, the domains of the variables are reduced

• Every constraint makes local deductions

Search

Develop a search tree (depth first).

• Select a variable x, a value v in its domain and branch on x = v or $x \neq v$

Inference

At every node of the tree, the domains of the variables are reduced

• Every constraint makes local deductions

Consistent iff every value of every variable is in a support

• Domain reductions from a constraint might trigger reduction by another constraint

Search

Develop a search tree (depth first).

• Select a variable x, a value v in its domain and branch on x = v or $x \neq v$

Inference

At every node of the tree, the domains of the variables are reduced

• Every constraint makes local deductions

Consistent iff every value of every variable is in a support

• Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation

• What inference can the inequality $x_f \neq x_e$ make?

- What inference can the inequality $x_f \neq x_e$ make?
- A support: a value $v \in \mathcal{D}(x_f)$ and a value $w \in \mathcal{D}(x_e)$ with $v \neq w$

- What inference can the inequality $x_f \neq x_e$ make?
- A support: a value $v \in \mathcal{D}(x_f)$ and a value $w \in \mathcal{D}(x_e)$ with $v \neq w$

Propagation of $x_f \neq x_e$

- As long as the domain $\mathcal{D}(x_f)$ has two distinct values, then x_e could take any value
- $x_f \in \{\mathbf{b}, \mathbf{r}\}, x_e \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}\}$: there is no correct domain reduction

- What inference can the inequality $x_f \neq x_e$ make?
- A support: a value $v \in \mathcal{D}(x_f)$ and a value $w \in \mathcal{D}(x_e)$ with $v \neq w$

Propagation of $x_f \neq x_e$

- As long as the domain $\mathcal{D}(x_f)$ has two distinct values, then x_e could take any value
- $x_f \in \{\mathbf{b}, \mathbf{r}\}, x_e \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}\}$: there is no correct domain reduction
- If $\mathcal{D}(x_f) = \{v\}$ then x_e cannot take the value v
- $x_f \in \{\mathbf{b}\}, x_e \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}\} \implies x_f \in \{\mathbf{b}\}, x_e \in \{\mathbf{r}, \mathbf{g}\}$

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$
$$\downarrow \qquad \qquad \downarrow$$
$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \qquad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} = \mathbf{b}$$

$$x_{f} = \mathbf{b}$$

$$x_{f} \in \{\mathbf{b}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} = \mathbf{b}$$

$$x_{f} = \mathbf{b}$$

$$x_{f} \in \{\mathbf{b}\} - x_{s} \in \{\mathbf{r}\}$$

$$x_{e} \in \{\mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{r}\}$$

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} = \mathbf{b}$$

$$x_{f} = \mathbf{b}$$

$$x_{f} \in \{\mathbf{b}\} - x_{s} \in \{\mathbf{r}\}$$

$$x_{e} \in \{\mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}\}$$

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} = \mathbf{b} \qquad x_{f} \neq \mathbf{b}$$

$$x_{f} = \mathbf{b} \qquad x_{f} \neq \mathbf{b}$$

$$x_{f} \in \{\mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{c}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{c}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} = \mathbf{b} \qquad x_{f} \neq \mathbf{b}$$

$$x_{f} = \mathbf{b} \qquad x_{f} \neq \mathbf{b}$$

$$x_{f} \in \{\mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{f} \in \{\mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}\}$$

Propagation of AllDifferent (\bar{x})

• A support is a perfect matching in the graph

- Every inequality is consistent
- AllDifferent is not consistent!

Propagation of AllDifferent (\bar{x})

- A support is a perfect matching in the graph
- The edge (x_f, \mathbf{b}) does not belong to any perfect matching
- AllDifferent(x_f, x_s, x_i) is consistent for $x_f \in \{g\} x_s \in \{b, r\}$ $x_i \in \{b, r\}$

Search Tree (AllDifferent)

$$x_{f} \in \{\mathbf{b}, \mathbf{g}\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, \mathbf{g}, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

Search Tree (AllDifferent)

$$x_{f} \in \{ g\} - x_{s} \in \{\mathbf{b}, \mathbf{r}\}$$

$$x_{e} \in \{\mathbf{b}, \mathbf{r}, g, \mathbf{y}\} \quad x_{i} \in \{\mathbf{b}, \mathbf{r}\}$$

Search Tree (AllDifferent)

$$x_{f} \in \{ g\} - x_{s} \in \{b, r\}$$

$$x_{e} \in \{b, r, g, y\} \quad x_{i} \in \{b, r\}$$

$$x_{s} = b$$

$$\downarrow$$

$$x_{f} \in \{g\} - x_{s} \in \{b\}$$

$$x_{e} \in \{b, r, y\} \quad x_{i} \in \{r\}$$

• Every constraint has a propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

• For every value v of every variable x

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x
 - Does there exist a support for x = v (a solution of the constraint involving x = v)
 - Otherwise, remove v from $\mathcal{D}(x)$

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x
 - Does there exist a support for x = v (a solution of the constraint involving x = v)
 - Otherwise, remove v from $\mathcal{D}(x)$

• The bigger (more global) the stronger!

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x
 - Does there exist a support for x = v (a solution of the constraint involving x = v)
 - Otherwise, remove v from $\mathcal{D}(x)$

• The bigger (more global) the stronger! (and the slower...)

Outline

1 Language

2 Variables

The art of modeling

Techniques to strenghthen propagation

- Common sub-expressions
- Global constraints
- Implied constraints
- Symmetry breaking
- Dominance

Golomb Ruler

Problem definition

- Place *m* marks on a ruler
- Distance between each pair of marks is different
- Goal is to minimise the size of the ruler
- Proposed by Sidon [1932] then independently by Golomb and Babcock

A First Model (Numberjack)

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2 ** (m - 1)
marks = VarArray(m, n, 'm')
distance = [Abs(marks[i] - marks[j]) for i in range(1, m) for j in range(i)]
model = Model(
    Minimise(Max(marks)), # objective function
    [m1 != m2 for m1,m2 in pair_of(marks)],
    [d1 != d2 for d1,d2 in pair_of(distance)]
)
solver = model.load('Mistral2', marks)
if solver.solve():
    print marks, [d.get_value() for d in distance]
```


A First Model (Choco)

```
Model model = new Model():
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);
int k = 0:
for(int i=0: i<m: ++i) {</pre>
        for(int j=i+1; j<m; ++j) {</pre>
                model.distance(marks[i], marks[j], "=", distance[k++]).post();
                model.arithm(marks[i], "!=", marks[j]).post(); }}
for(int i=0: i<distance.length: ++i)</pre>
        for(int j=i+1; j<distance.length; ++j)</pre>
                model.arithm(distance[i], "!=", distance[j]).post();
IntVar objective = model.intVar("obj", 0, n);
model.max(objective, marks).post();
```

```
model.setObjective(Model.MINIMIZE, objective);
```


• An objective variable

model.setObjective(Model.MINIMIZE, objective);

• An objective variable

model.setObjective(Model.MINIMIZE, objective);

• The upper bound is updated when a new solution is found

• An objective variable

model.setObjective(Model.MINIMIZE, objective);

- The upper bound is updated when a new solution is found
- The lower bound is maintained via constraint propagation

model.max(objective, marks).post();

• An objective variable

model.setObjective(Model.MINIMIZE, objective);

- The upper bound is updated when a new solution is found
- The lower bound is maintained via constraint propagation model.max(objective, marks).post();
- Different models may entail different lower bounds for the same objective function

Global Constraints (Numberjack)

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2 ** (m - 1)
marks = VarArray(m, n, 'm')
distance = [Abs(marks[i] - marks[j]) for i in range(m-1) for j in range(i+1,m)]
model = Model(
    Minimise(Max(marks)), # objective function
    AllDiff(marks),
    AllDiff(distance)
)
solver = model.load('Mistral2', marks)
if solver.solve():
    print marks, [d.get_value() for d in distance]
```


Global Constraints (Choco)

```
Model model = new Model():
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d", m * (m - 1) / 2, 1, n);
int k = 0:
for(int i=0; i<m: ++i)</pre>
        for(int j=i+1; j<m; ++j)</pre>
                model.distance(marks[i], marks[j], "=", distance[k++]).post();
model.allDifferent(marks).post();
model.allDifferent(distance).post();
IntVar objective = model.intVar("obj", 0, n);
model.max(objective, marks).post();
```

model.setObjective(Model.MINIMIZE, objective);

• Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

• Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

Variable symmetries: marks, distance

• Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)

• Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)
- Force an arbitrary ordering
 - ★ marks[1] < marks[2] < ... < marks[m]</p>

 $\bullet~$ Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)
- Force an arbitrary ordering
 - ★ marks[1] < marks[2] < ... < marks[m]</p>
- Distances are still symmetric by reflection

• Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)
- Force an arbitrary ordering
 - ★ marks[1] < marks[2] < ... < marks[m]</p>
- Distances are still symmetric by reflection
 - ★ distance[0,1] < distance[m 2, m 1]

Symmetry breaking (Numberjack)

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2 ** (m - 1)
marks = VarArray(m, n, 'm')
distance = [marks[j] - marks[i] for i in range(m-1) for j in range(i+1,m)]
model = Model(
    Minimise(marks[-1]), # objective function
    [marks[i-1] < marks[i] for i in range(1, m)],</pre>
    marks[0] == 0.
    distance[0] < distance[-1],
    AllDiff(distance)
)
solver = model.load('Mistral2', marks)
solver.setHeuristic('MinDomainMinVal');
if solver.solve():
    print marks, [d.get_value() for d in distance]
```


Symmetry breaking (Choco)

```
Model model = new Model();
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d", m * (m - 1) / 2, 1, n);
int k = 0;
for(int i=0; i<m-1; ++i) {
    model.arithm(marks[i], "<", marks[i+1]).post();
    for(int j=i+1; j<m; ++j)
        model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();
        model.arithm(marks[0], "=", 0).post();
        model.arithm(distance[0], "<", distance[distance.length-1]).post();
}
model.allDifferent(distance).post();
model.setObjective(Model.MINIMIZE, marks[m-1]);
```


Implied constraint

Implied by the model, does not change the set of solutions

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \implies \text{AllDifferent}(x, y, z)$
- $x \neq y, x \leq y \implies x < y$

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \implies \text{AllDifferent}(x, y, z)$
- $x \neq y, x \leq y \implies x < y$

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \implies \text{AllDifferent}(x, y, z)$
- $x \neq y, x \leq y \implies x < y$

Let $x \in \{1, \dots, 10\}, y \in \{1, \dots, 10\}$

• $x \neq y$ is consistent (x = 10 has $\langle 10, 9 \rangle$ as support)

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \implies \text{AllDifferent}(x, y, z)$
- $x \neq y, x \leq y \implies x < y$

- $x \neq y$ is consistent (x = 10 has $\langle 10, 9 \rangle$ as support)
- $x \leq y$ is consistent (x = 10 has $\langle 10, 10 \rangle$ as support)

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \implies \text{AllDifferent}(x, y, z)$
- $x \neq y, x \leq y \implies x < y$

- $x \neq y$ is consistent (x = 10 has $\langle 10, 9 \rangle$ as support)
- $x \leq y$ is consistent (x = 10 has $\langle 10, 10 \rangle$ as support)
- x < y is inconsistent

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \implies \text{AllDifferent}(x, y, z)$
- $x \neq y, x \leq y \implies x < y$

- $x \neq y$ is consistent (x = 10 has $\langle 10, 9 \rangle$ as support)
- $x \leq y$ is consistent (x = 10 has $\langle 10, 10 \rangle$ as support)
- x < y is inconsistent
 - consistent with $x \in \{1, ..., 9\}, y \in \{2, ..., 10\}$

• distance[i,j] \geq sum of j - i distances

- distance[i,j] \geq sum of j i distances
- The distances are all different

- distance[i,j] \geq sum of j i distances
- The distances are all different

- distance[i,j] \geq sum of j i distances
- The distances are all different distance[i,j] $\geq (j-i) * (j-i+1)/2$

- distance[i,j] \geq sum of j i distances
- The distances are all different distance[i,j] $\geq (j-i)*(j-i+1)/2$
- Same reasoning from the end (marks[m-1])
 - distance[i,j] \leq marks[m] sum of m 1 j + i distances

- distance[i,j] \geq sum of j i distances
- The distances are all different distance[i,j] $\geq (j-i) * (j-i+1)/2$
- Same reasoning from the end (marks[m-1])
 - distance[i,j] \leq marks[m] sum of m 1 j + i distances
 - distance[i,j] $\leq \max [m] (m-1-j+i) * (m-j+i)/2$

- Implied constraints
 - distance[i,j] $\geq (j-i)*(j-i+1)/2$
 - distance[i,j] $\leq \max[m] (m-1-j+i) * (m-j+i)/2$

- Implied constraints
 - distance[i,j] $\geq (j-i)*(j-i+1)/2$
 - distance[i,j] $\leq \max[m] (m-1-j+i) * (m-j+i)/2$
- How do we know that these constraints are useful (improving constraint propagation)

- Implied constraints
 - distance[i,j] $\geq (j i) * (j i + 1)/2$
 - distance[i,j] $\leq \max[m] (m-1-j+i) * (m-j+i)/2$
- How do we know that these constraints are useful (improving constraint propagation)
- We need to combine the reasoning of two constraints (AllDifferent(distance) and distance[i,j] = $\sum_{k=i}^{j-1} distance[k,k+1]$)

- Implied constraints
 - distance[i,j] $\geq (j i) * (j i + 1)/2$
 - distance[i,j] $\leq \max[m] (m-1-j+i) * (m-j+i)/2$
- How do we know that these constraints are useful (improving constraint propagation)
- We need to combine the reasoning of two constraints (AllDifferent(distance) and distance[i,j] = $\sum_{k=i}^{j-1} distance[k,k+1]$)
- Domain reduction is not sufficient to "communicate" between the two constraints
 - The implied constraints reduce the domains at the root node

- Implied constraints
 - distance[i,j] $\geq (j i) * (j i + 1)/2$
 - distance[i,j] $\leq \max[m] (m-1-j+i) * (m-j+i)/2$
- How do we know that these constraints are useful (improving constraint propagation)
- We need to combine the reasoning of two constraints (AllDifferent(distance) and distance[i,j] = $\sum_{k=i}^{j-1} distance[k,k+1]$)
- Domain reduction is not sufficient to "communicate" between the two constraints
 - The implied constraints reduce the domains at the root node
- In doubt, just try!

Implied Constraints (Numberjack)

```
import sys
from Numberiack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2 ** (m - 1)
marks = VarArray(m, n, 'm')
dmap = dict([((i,j), marks[j] - marks[i]) for i in range(m-1) for j in range(i+1,m)])
distance = [dmap[(i,j)] for i in range(m-1) for j in range(i+1,m)]
lbs = [(j - i) * (j - i + 1) / 2 \text{ for } i \text{ in range(m-1) for } j \text{ in range(i+1,m)}]
ubs = [marks[-1] - (m - 1 - i + i) * (m - i + i) / 2 for i in range(m-1) for i in range(i+1,m)]
model = Model(
    Minimise(marks[-1]), # objective function
    [marks[i-1] < marks[i] for i in range(1, m)],</pre>
    marks[0] == 0.
    distance [0] < distance [-1].
    AllDiff(distance).
    [d >= 1 for d.1 in zip(distance, lbs)].
    [d <= u for d,u in zip(distance, ubs)],</pre>
    [dmap[(i,j)] == dmap[(i,j-1)] + dmap[(j-1,j)] for i in range(m-2) for j in range(i+2,m)]
)
solver = model.load('Mistral2',marks)
if solver solve().
    print marks, [d.get value() for d in distance]
```


Implied Constraints (Choco)

```
Model model = new Model();
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d".m * (m - 1) / 2, 1, n);
% IntVar[][] dmap = new IntVar[m][m];
int k = 0:
for(int i=0; i<m-1; ++i) {</pre>
        model.arithm(marks[i], "<", marks[i+1]).post();</pre>
        for(int j=i+1; j<m; ++j) {</pre>
                dmap[i][i] = distance[k]:
                model.arithm(distance[k], "<=", marks[m - 1], "-", ((m - 1 - j + i) * (m - j + i)) / 2).post();
                model.arithm(distance[k], ">=", (j - i) * (j - i + 1) / 2).post();
                model.scalar(new IntVar[]{marks[i], marks[i]}, new int[]{-1,1}, "=", distance[k++]).post();
        model.arithm(marks[0], "=", 0).post();
        model.arithm(distance[0], "<", distance[distance.length-1]).post();</pre>
% for(int i=0: i<m-2: ++i)
         for(int j=i+2; j<m; ++j)</pre>
%
                   model.arithm(dmap[i][j], "=", dmap[i][j-1], "+", dmap[j-1][j]).post();
model.allDifferent(distance).post();
model.setObjective(Model.MINIMIZE, marks[m-1]);
```


Good modeling practices

Good modeling practices

• What are the variables, what are the values?

Good modeling practices

- What are the variables, what are the values?
 - Constraints will follow

Good modeling practices

- What are the variables, what are the values?
 - Constraints will follow
 - Defines the shape of the search tree

Conclusions

Good modeling practices

- What are the variables, what are the values?
 - Constraints will follow
 - Defines the shape of the search tree
- Key principle: strengthen constraint propagation
 - Global constraints
 - Implied constraints
 - Symmetry breaking

Master class on hybrid optimisation Toulouse June 4th and 5th

Pierre Bonami (Université d'Aix-Marseille) Mixed-Integer Linear and Nonlinear Programming Methods

- Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete Optimization, Constraint programming, and Integer Programming
 - John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming / Constraint Programming Methods
 - Paul Shaw (IBM Research) Combinations of local search and constraint programming

Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT solvers

Master class on hybrid optimisation Toulouse June 4th and 5th

Pierre Bonami (Université d'Aix-Marseille) Mixed-Integer Linear and Nonlinear Programming Methods

- Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete Optimization, Constraint programming, and Integer Programming
 - John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming / Constraint Programming Methods
 - Paul Shaw (IBM Research) Combinations of local search and constraint programming

Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT solvers

Free registration, students' accommodation covered!