Modeling and Solving Constraint Problems

Emmanuel Hebrard

Avant propos

Avant propos

- Introduction to constraint programming (no pre-requisite)

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none
- Constraint programming $=$ combinatorial branch \& bound plus a lot of jargon

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none
- Constraint programming $=$ combinatorial branch \& bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
- Notions of model and solver

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none
- Constraint programming $=$ combinatorial branch \& bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
- Notions of model and solver
- I will not talk about user-defined propagator

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none
- Constraint programming $=$ combinatorial branch \& bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
- Notions of model and solver
- I will not talk about user-defined propagator
- I will not talk about search strategies (though there are things to do at the language level)

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none
- Constraint programming $=$ combinatorial branch \& bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
- Notions of model and solver
- I will not talk about user-defined propagator
- I will not talk about search strategies (though there are things to do at the language level)
- The minimum about solving methods to allow for clever modeling

Avant propos

- Introduction to constraint programming (no pre-requisite)
- Or almost none
- Constraint programming $=$ combinatorial branch \& bound plus a lot of jargon
- Language-level modeling: stating and solving a problem with an off-the-shelf toolkit
- Notions of model and solver
- I will not talk about user-defined propagator
- I will not talk about search strategies (though there are things to do at the language level)
- The minimum about solving methods to allow for clever modeling
- It turns out, it is already a lot!

Outline

(1) Language
(2) Variables
(3) Constraints
(4) Modeling

- Ex: Golomb Ruler

Outline

(1) Language

2) Variables

(3) Constraints
4) Modeling

Constraint Optimization Problem

Constraint Optimization Problem

- Variables: with finite discrete domains (e.g. $x \in\{2,3,5,7,11,13\}, y \in[0,100000]$)

Constraint Optimization Problem

- Variables: with finite discrete domains (e.g. $x \in\{2,3,5,7,11,13\}, y \in[0,100000]$)
- Constraints: any relation between variables (e.g. $x=(\sqrt{y} \bmod 15))$

Constraint Optimization Problem

- Variables: with finite discrete domains (e.g. $x \in\{2,3,5,7,11,13\}, y \in[0,100000]$)
- Constraints: any relation between variables (e.g. $x=(\sqrt{y} \bmod 15))$
- Objective: distinguished variable to minimize/maximize

Map Coloring

\square

Map Coloring

Map Coloring

Map Coloring (Numberjack)

```
from Numberjack import *
france = Variable(['blue','green'], 'france')
switzerland = Variable(['blue','red'], 'switzerland')
spain = Variable(['blue','yellow','red','green'], 'spain')
italy = Variable(['blue','red'], 'italy')
model = Model(
        france != switzerland,
        france != italy,
        france != spain,
        italy != switzerland
        )
solver = model.load('Mistral2')
if solver.solve():
    for var in [france, switzerland, spain, italy]:
        print var.name(), 'in', var.get_value()
```


Map Coloring (Choco)

```
static final String[] colorname = {"red", "blue", "green", "yellow"};
static final Map<String, Integer> colorindex = new HashMap<String, Integer>();
public static void main(String[] args) {
    for(int i=0; i<colorname.length; ++i) colorindex.put(colorname[i], i);
    Model model = new Model("Map coloring example");
    IntVar france = model.intVar("france", new int[]{colorindex.get("blue"), colorindex.get("green")});
    IntVar switzerland = model.intVar("switzerland", new int[]{colorindex.get("blue"), colorindex.get("red"
    IntVar spain = model.intVar("spain", new int[]{colorindex.get("blue"), colorindex.get("yellow"), colori
    IntVar italy = model.intVar("italy", new int[]{colorindex.get("blue"), colorindex.get("red")});
    model.arithm(france, "!=", switzerland).post();
    model.arithm(france, "!=", italy).post();
    model.arithm(france, "!=", spain).post();
    model.arithm(italy, "!=", switzerland).post();
    if(model.getSolver().solve()){
            for(IntVar x : new IntVar[]{france, switzerland, spain, italy})
                            System.out.printf("%s in %s\n", x.getName(), color_name[x.getValue()]);
    }
}
```


Constraint Toolkits

Constraint Toolkits

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')

Constraint Toolkits

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
- Among the constraints defined in the language/toolkit

Constraint Toolkits

- Declare variables and their domains e.g., france = Variable(['blue','green'], 'france')
- Declare constraints e.g., france != switzerland
- Among the constraints defined in the language/toolkit (or user-defined!)

Constraint Toolkits

- Declare variables and their domains e.g., france = Variable(['blue','green'], 'france')
- Declare constraints e.g., france != switzerland
- Among the constraints defined in the language/toolkit (or user-defined!)
- Linear constraints, arithmetic and logic operators $(=, \neq, \leq,>, \vee, \wedge, \Longrightarrow, \%, \times,+, /, \ldots)$

Constraint Toolkits

- Declare variables and their domains e.g., france = Variable(['blue','green'], 'france')
- Declare constraints e.g., france != switzerland
- Among the constraints defined in the language/toolkit (or user-defined!)
- Linear constraints, arithmetic and logic operators $(=, \neq, \leq,>, \vee, \wedge, \Longrightarrow, \%, \times,+, /, \ldots)$
- Some keyworded relations AllDifferent, Element, etc.

Constraint Toolkits

- Declare variables and their domains e.g., france = Variable(['blue', 'green'], 'france')
- Declare constraints e.g., france != switzerland
- Among the constraints defined in the language/toolkit (or user-defined!)
- Linear constraints, arithmetic and logic operators $(=, \neq, \leq,>, \vee, \wedge, \Longrightarrow, \%, \times,+, /, \ldots)$
- Some keyworded relations AllDifferent, Element, etc.
- Any Expression tree of the above

(1) Language

(2) Variables

(3) Constraints

4) Modeling

Choice of representation

Choice of representation

- The same problem might be mapped to many models

Choice of representation

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
- TSP: $x_{i j} \leftrightarrow$ do we use arc (i, j) ? or $x_{i} \leftrightarrow$ what it the i-th visited city?

Choice of representation

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
- TSP: $x_{i j} \leftrightarrow$ do we use arc (i, j) ? or $x_{i} \leftrightarrow$ what it the i-th visited city?
- Constraints follow from the choice of variable viewpoint

Choice of representation

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
- TSP: $x_{i j} \leftrightarrow$ do we use arc (i, j) ? or $x_{i} \leftrightarrow$ what it the i-th visited city?
- Constraints follow from the choice of variable viewpoint
- Sometimes the best choice is clear, but not always

Choice of representation

- The same problem might be mapped to many models
- The most important and fundamental choice is the choice of variable viewpoint [Barbara Smith]
- TSP: $x_{i j} \leftrightarrow$ do we use arc (i, j) ? or $x_{i} \leftrightarrow$ what it the i-th visited city?
- Constraints follow from the choice of variable viewpoint
- Sometimes the best choice is clear, but not always
- Consider the graph coloring example

Choice of representation

Choice of representation

- Zykov recurrence [Zykov 49]: take a non-edge e, s. In the optimal coloring:

Choice of representation

- Zykov recurrence [Zykov 49]: take a non-edge
 e, s. In the optimal coloring:
- either e and s take a different color, so adding the edge would not hurt

Choice of representation

- Zykov recurrence [Zykov 49]: take a non-edge e, s. In the optimal coloring:
- either e and s take a different color, so adding the edge would not hurt
- or e and s take the same color, so merging them (adding an equality constraint) would not hurt

Choice of representation

- Zykov recurrence [Zykov 49]: take a non-edge e, s. In the optimal coloring:
- either e and s take a different color, so adding the edge would not hurt
- or e and s take the same color, so merging them (adding an equality constraint) would not hurt
- Instead of assigning colors to nodes, we can assign $\{=, \neq\}$ to non-edges

Choice of representation

- Zykov recurrence [Zykov 49]: take a non-edge e, s. In the optimal coloring:
- either e and s take a different color, so adding the edge would not hurt
- or e and s take the same color, so merging them (adding an equality constraint) would not hurt
- Instead of assigning colors to nodes, we can assign $\{=, \neq\}$ to non-edges
- No color symmetry anymore!

Choice of representation

- Zykov recurrence [Zykov 49]: take a non-edge e, s. In the optimal coloring:
- either e and s take a different color, so adding the edge would not hurt
- or e and s take the same color, so merging them (adding an equality constraint) would not hurt
- Instead of assigning colors to nodes, we can assign $\{=, \neq\}$ to non-edges
- No color symmetry anymore!
- But stating the constraints is difficult

The best variable viewpoint is the one that...

The best variable viewpoint is the one that...

- ...induces the smallest search tree

The best variable viewpoint is the one that...

- ...induces the smallest search tree
- ...induces the "best" set of constraints

The best variable viewpoint is the one that...

- ...induces the smallest search tree
- ...induces the "best" set of constraints

What is a good constraint set?

(1) Language

(2) Variables

(3) Constraints

- Expression tree
- Global constraints
- Constraint solving

4) Modeling

Combining constraints (logically)

Combining constraints (logically)

- Most logic operators
- can be used as a relation $(x \neq y)$

Combining constraints (logically)

- Most logic operators
- can be used as a relation $(x \neq y) \ldots$
- or as a predicate $((x \neq y) \Longrightarrow y \leq 12)$

Combining constraints (logically)

- Most logic operators
- can be used as a relation $(x \neq y) \ldots$
- or as a predicate $((x \neq y) \Longrightarrow y \leq 12)$
- Two different constraints: $x \neq y$ and $(x \neq y) \Longleftrightarrow z$ (reification)

Combining constraints (logically)

- Most logic operators
- can be used as a relation $(x \neq y) \ldots$
- or as a predicate $((x \neq y) \Longrightarrow y \leq 12)$
- Two different constraints: $x \neq y$ and $(x \neq y) \Longleftrightarrow z$ (reification)

$$
\begin{aligned}
(x \neq y) \Longrightarrow y \leq 12 \quad \text { encoded as } & (x \neq y) \Longleftrightarrow z \\
& z \Longrightarrow(y \leq 12)
\end{aligned}
$$

- Which you can write $(x \neq y) \Longrightarrow y \leq 12$ (and let the system insert extra variables)

Combining constraints (functionally)

Combining constraints (functionally)

- There are also function operators that must be combined similarly
- For instance $(|x-y| * z) \leq(z+12)$

$$
\begin{aligned}
(|x-y| * z) \leq(z+12) \quad \text { encoded as } & (x-y)=a_{1} \\
& \left|a_{1}\right|=a_{2} \\
& a_{2} * z=a_{3} \\
& z+12=a_{4} \\
& a_{3} \leq a_{4}
\end{aligned}
$$

Constraints - Root of the expression tree

$$
\begin{aligned}
& \mathrm{C} 1=(\mathrm{X}+\mathrm{Y}<5) \mid(\mathrm{X}+3<\mathrm{Y}) \\
& \mathrm{C} 2=\operatorname{AllDiff}([\mathrm{x}, \mathrm{y}, \mathrm{z}]) \\
& \mathrm{C} 3=\operatorname{Sum}([\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}])>=\mathrm{e}
\end{aligned}
$$

Predicates \& functions - Internal nodes

$\mathrm{P}=\mathrm{X}+\mathrm{Y}$	\# arythmetic value
$\mathrm{Q}=\mathrm{X}+3<=\mathrm{Y}$	\# truth (logic) value

Variables - Leaves of the expression tree

$$
\begin{aligned}
& \mathrm{X}=\operatorname{Variable}(0,10) \\
& \mathrm{X}=\operatorname{Variable}([1,3,5,7])
\end{aligned}
$$

Expression Tree

MY HOBBY:
 EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

XKCD Knapsack

CHOTCHKIES RESTAURANT	
MIXED FRUIT	2.15
FRENCH FRIES	2.75
SIDE SALAD	3.35
HOT WINGS	3.55
MOZZARELLA STICKS	4.20
SAMPLER PLATE	5.80
SANDWICHES \sim	
RARRECIIE	655

WED LIKE EXACTLY \$15.05 WORTH OF APPETIZERS, PLEASE.
... EXACTLY? UHH ...
HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO -

- AS FAST AS POSSIBLE, OF COURSE. WANT something on Traveling salesman?


```
from Numberjack import *
price = [215, 275, 335, 355, 420, 580]
appetizers = ["Mixed Fruit", "French Fries", "Side Salad",
    "Hot Wings", "Mozzarella Sticks", "Sample Plate"]
total = 1505
num_appetizers = len(appetizers)
quantities = [Variable(0, 1505/price[i], '#'+appetizers[i])
    for i in range(num_appetizers)]
model = Model(
    Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total
    )
solver = model.load('Mistral2')
solver.startNewSearch()
while solver.getNextSolution() == SAT:
    print "\nSOLUTION:\n", "\n".join("%s x %s ($%.2lf)" % (quantities[i], \
        appetizers[i], price[i] / 100.0) for i in xrange(num_appetizers))
```


XKCD Knapsack

```
Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total
```


XKCD Knapsack

```
Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total
```


- Solution 1:

7	\times	Mixed Fruit	$(\$ 2.15)$
0	\times	French Fries	$(\$ 2.75)$
0	\times	Side Salad	$(\$ 3.35)$
0	\times	Hot Wings	$(\$ 3.55)$
0	\times	Mozzarella Sticks	$(\$ 4.20)$
0	\times	Sample Plate	$(\$ 5.80)$

- Solution 2:

1	\times	Mixed Fruit	$(\$ 2.15)$
0	\times	French Fries	$(\$ 2.75)$
0	\times	Side Salad	$(\$ 3.35)$
2	\times	Hot Wings	$(\$ 3.55)$
0	\times	Mozzarella Sticks	$(\$ 4.20)$
1	\times	Sample Plate	$(\$ 5.80)$

Global constraints

- CP languages contain a number of keywords for specific relations on variables

Global constraints

- CP languages contain a number of keywords for specific relations on variables

AllDifferent

$$
\text { AllDifferent }\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \forall 1 \leq i<j \leq n x_{i} \neq x_{j}
$$

LAAS

- CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent $\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \forall 1 \leq i<j \leq n x_{i} \neq x_{j}$
$\bar{x}=3,5,1,2,7$ satisfies AllDifferent
$\bar{x}=3,5,1,2,5$ does not satisfy AllDifferent

Global constraints

$$
\text { AllDifferent }\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \forall 1 \leq i<j \leq n x_{i} \neq x_{j}
$$

- CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent $\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \forall 1 \leq i<j \leq n x_{i} \neq x_{j}$
$\bar{x}=3,5,1,2,7$ satisfies AllDifferent
$\bar{x}=3,5,1,2,5$ does not satisfy AllDifferent

Element
Element $\left(x_{0}, \ldots, x_{n-1}, y, z\right) \Longleftrightarrow x_{y}=z$

- CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent $\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \forall 1 \leq i<j \leq n x_{i} \neq x_{j}$
$\bar{x}=3,5,1,2,7$ satisfies AllDifferent
$\bar{x}=3,5,1,2,5$ does not satisfy AllDifferent

Element

$\operatorname{Element}\left(x_{0}, \ldots, x_{n-1}, y, z\right) \Longleftrightarrow x_{y}=z$
$\bar{x}=3,5,1,2,5, y=1, z=5$ satisfies Element
$\bar{x}=3,5,1,2,5, y=2, z=5$ does not satisfy Element

Map Coloring

Map Coloring

$\mathcal{D}\left(x_{i}\right)$: blue red
red
green
$\begin{array}{ll}\mathcal{D}\left(x_{f}\right): & \text { blue } \\ & \text { green }\end{array}$
$\mathcal{D}\left(x_{e}\right)$: blue
yellow

$$
\mathcal{D}\left(x_{s}\right): \quad \begin{aligned}
& \text { blue } \\
& \text { red }
\end{aligned}
$$

Constraint solver

Constraint solver

Search

Develop a search tree (depth first).

- Select a variable x, a value v in its domain and branch on $x=v$ or $x \neq v$

Constraint solver

Search

Develop a search tree (depth first).

- Select a variable x, a value v in its domain and branch on $x=v$ or $x \neq v$

Inference

At every node of the tree, the domains of the variables are reduced

- Every constraint makes local deductions

Constraint solver

Search

Develop a search tree (depth first).

- Select a variable x, a value v in its domain and branch on $x=v$ or $x \neq v$

Inference

At every node of the tree, the domains of the variables are reduced

- Every constraint makes local deductions

Consistent iff every value of every variable is in a support

- Domain reductions from a constraint might trigger reduction by another constraint

Constraint solver

Search

Develop a search tree (depth first).

- Select a variable x, a value v in its domain and branch on $x=v$ or $x \neq v$

Inference

At every node of the tree, the domains of the variables are reduced

- Every constraint makes local deductions

Consistent iff every value of every variable is in a support

- Domain reductions from a constraint might trigger reduction by another constraint constraint propagation

Example: binary constraint

Example: binary constraint

- What inference can the inequality $x_{f} \neq x_{e}$ make?

Example: binary constraint

- What inference can the inequality $x_{f} \neq x_{e}$ make?
- A support: a value $v \in \mathcal{D}\left(x_{f}\right)$ and a value $w \in \mathcal{D}\left(x_{e}\right)$ with $v \neq w$

LAAS

Example: binary constraint

- What inference can the inequality $x_{f} \neq x_{e}$ make?
- A support: a value $v \in \mathcal{D}\left(x_{f}\right)$ and a value $w \in \mathcal{D}\left(x_{e}\right)$ with $v \neq w$

Propagation of $x_{f} \neq x_{e}$

- As long as the domain $\mathcal{D}\left(x_{f}\right)$ has two distinct values, then x_{e} could take any value
- $x_{f} \in\{\mathbf{b}, \mathbf{r}\}, x_{e} \in\{\mathbf{b}, \mathbf{r}, \mathrm{~g}\}$: there is no correct domain reduction

Example: binary constraint

- What inference can the inequality $x_{f} \neq x_{e}$ make?
- A support: a value $v \in \mathcal{D}\left(x_{f}\right)$ and a value $w \in \mathcal{D}\left(x_{e}\right)$ with $v \neq w$

Propagation of $x_{f} \neq x_{e}$

- As long as the domain $\mathcal{D}\left(x_{f}\right)$ has two distinct values, then x_{e} could take any value
- $x_{f} \in\{\mathbf{b}, \mathbf{r}\}, x_{e} \in\{\mathbf{b}, \mathbf{r}, \mathrm{~g}\}$: there is no correct domain reduction
- If $\mathcal{D}\left(x_{f}\right)=\{v\}$ then x_{e} cannot take the value v
- $x_{f} \in\{\mathbf{b}\}, x_{e} \in\{\mathbf{b}, \mathbf{r}, \mathrm{~g}\} \Longrightarrow x_{f} \in\{\mathbf{b}\}, x_{e} \in\{\mathbf{r}, g\}$

Search Tree

$$
\begin{gathered}
x_{f} \in\{\mathbf{b}, g\}-x_{s} \in\{\mathbf{b}, \mathbf{r}\} \\
\mathbf{\prime} \\
x_{e} \in\left\{\begin{array}{c}
\mathbf{b}, \mathbf{r}, g, y\} \\
x_{i} \in\{\mathbf{b}, \mathbf{r}\}
\end{array}\right.
\end{gathered}
$$

Search Tree

Search Tree

Constraint

Search Tree

Search Tree

Search Tree

Example: global constraint

Example: global constraint

Example: global constraint

- Every inequality is consistent

Propagation of AllDifferent (\bar{x})

- A support is a perfect matching in the graph

Propagation of AllDifferent (\bar{x})

- A support is a perfect matching in the graph
- The edge $\left(x_{f}, \mathbf{b}\right)$ does not belong to any perfect matching
- AllDifferent $\left(x_{f}, x_{s}, x_{i}\right)$ is consistent for $x_{f} \in\{\mathrm{~g}\} x_{s} \in\{\mathbf{b}, \mathbf{r}\}$ $x_{i} \in\{\mathbf{b}, \mathbf{r}\}$

Search Tree (AllDifferent)

$$
\begin{gathered}
x_{f} \in\{\mathbf{b}, g\}-x_{s} \in\{\mathbf{b}, r\} \\
\vdots \\
x_{e} \in\left\{\begin{array}{c}
\mathbf{b}, \mathbf{r}, g, y\} \\
x_{i} \in\{\mathbf{b}, \mathbf{r}\}
\end{array}\right.
\end{gathered}
$$

Search Tree (AllDifferent)

$$
\begin{gathered}
x_{f} \in\left\{\begin{array}{l}
\{\mathrm{g}\}-x_{s} \in\{\mathbf{b}, \mathbf{r}\} \\
\mathbf{\prime} \\
x_{e} \in\left\{\begin{array}{l}
\mathbf{b}, \mathbf{r}, \mathrm{g}, \mathrm{y}\}
\end{array}\right. \\
x_{i} \in\{\mathbf{b}, \mathbf{r}\}
\end{array} .\right.
\end{gathered}
$$

Search Tree (AllDifferent)

Propagation algorithm

- Every constraint has a propagation algorithm

Propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

Propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x

Propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x
- Does there exist a support for $x=v$ (a solution of the constraint involving $x=v$)
- Otherwise, remove v from $\mathcal{D}(x)$

Propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x
- Does there exist a support for $x=v$ (a solution of the constraint involving $x=v$)
- Otherwise, remove v from $\mathcal{D}(x)$
- The bigger (more global) the stronger!

Propagation algorithm

- Every constraint has a propagation algorithm
- How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable's domain

- For every value v of every variable x
- Does there exist a support for $x=v$ (a solution of the constraint involving $x=v$)
- Otherwise, remove v from $\mathcal{D}(x)$
- The bigger (more global) the stronger! (and the slower...)
(3) Constraints

4 Modeling

- Ex: Golomb Ruler

The art of modeling

Techniques to strenghthen propagation

- Common sub-expressions
- Global constraints
- Implied constraints
- Symmetry breaking
- Dominance

Golomb Ruler

Problem definition

- Place m marks on a ruler
- Distance between each pair of marks is different
- Goal is to minimise the size of the ruler
- Proposed by Sidon [1932] then independently by Golomb and Babcock

LAAS

A First Model (Numberjack)

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2** (m - 1)
marks = VarArray(m, n, 'm')
distance = [Abs(marks[i] - marks[j]) for i in range(1, m) for j in range(i)]
model = Model(
    Minimise(Max(marks)), # objective function
        [m1 != m2 for m1,m2 in pair_of(marks)],
        [d1 != d2 for d1,d2 in pair_of(distance)]
)
solver = model.load('Mistral2', marks)
if solver.solve():
    print marks, [d.get_value() for d in distance]
```


LAAS

```
Model model = new Model();
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);
int k = 0;
for(int i=0; i<m; ++i) {
    for(int j=i+1; j<m; ++j) {
        model.distance(marks[i], marks[j], "=", distance[k++]).post();
        model.arithm(marks[i], "!=", marks[j]).post(); }}
for(int i=0; i<distance.length; ++i)
    for(int j=i+1; j<distance.length; ++j)
        model.arithm(distance[i], "!=", distance[j]).post();
IntVar objective = model.intVar("obj", 0, n);
model.max(objective, marks).post();
model.setObjective(Model.MINIMIZE, objective);
```


Branch \& Bound

- An objective variable

```
    model.setObjective(Model.MINIMIZE, objective);
```


Branch \& Bound

- An objective variable

```
    model.setObjective(Model.MINIMIZE, objective);
```

- The upper bound is updated when a new solution is found

Branch \& Bound

- An objective variable

```
model.setObjective(Model.MINIMIZE, objective);
```

- The upper bound is updated when a new solution is found
- The lower bound is maintained via constraint propagation

```
model.max(objective, marks).post();
```


Branch \& Bound

- An objective variable

```
model.setObjective(Model.MINIMIZE, objective);
```

- The upper bound is updated when a new solution is found
- The lower bound is maintained via constraint propagation

```
model.max(objective, marks).post();
```

- Different models may entail different lower bounds for the same objective function

LAAS

Global Constraints (Numberjack)

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2** (m - 1)
marks = VarArray(m, n, 'm')
distance = [Abs(marks[i] - marks[j]) for i in range(m-1) for j in range(i+1,m)]
model = Model(
    Minimise(Max(marks)), # objective function
        AllDiff(marks),
        AllDiff(distance)
)
solver = model.load('Mistral2', marks)
if solver.solve():
    print marks, [d.get_value() for d in distance]
```


Global Constraints (Choco)

```
Model model = new Model();
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);
int k = 0;
for(int i=0; i<m; ++i)
    for(int j=i+1; j<m; ++j)
        model.distance(marks[i], marks[j], "=", distance[k++]).post();
model.allDifferent(marks).post();
model.allDifferent(distance).post();
IntVar objective = model.intVar("obj", 0, n);
model.max(objective, marks).post();
model.setObjective(Model.MINIMIZE, objective);
```


Symmetry breaking

Symmetry breaking

- Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

Symmetry breaking

- Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree
- Variable symmetries: marks, distance

Symmetry breaking

- Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree
- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)

Symmetry breaking

- Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)
- Force an arbitrary ordering

```
\star marks[1] < marks[2] < .. < marks[m]
```


Symmetry breaking

- Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)
- Force an arbitrary ordering

```
\star marks[1] < marks[2] < ... < marks[m]
```

- Distances are still symmetric by reflection

Symmetry breaking

- Solution symmetries \Rightarrow symmetric (suboptimal) branches in the search tree

- Variable symmetries: marks, distance
- We can swap the marks or the distances of a solution (but not both)
- Force an arbitrary ordering

```
\star marks[1] < marks[2] < .. < marks[m]
```

- Distances are still symmetric by reflection

$$
\star \text { distance }[0,1]<\operatorname{distance}[m-2, m-1]
$$

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2** (m - 1)
marks = VarArray(m, n, 'm')
distance = [marks[j] - marks[i] for i in range(m-1) for j in range(i+1,m)]
model = Model(
    Minimise(marks[-1]), # objective function
        [marks[i-1] < marks[i] for i in range(1, m)],
        marks[0] == 0,
        distance[0] < distance[-1],
        AllDiff(distance)
)
solver = model.load('Mistral2', marks)
solver.setHeuristic('MinDomainMinVal');
if solver.solve():
        print marks, [d.get_value() for d in distance]
```


Symmetry breaking (Choco)

```
Model model = new Model();
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);
int k = 0;
for(int i=0; i<m-1; ++i) {
    model.arithm(marks[i], "<", marks[i+1]).post();
        for(int j=i+1; j<m; ++j)
            model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();
        model.arithm(marks[0], "=", 0).post();
        model.arithm(distance[0], "<", distance[distance.length-1]).post();
}
model.allDifferent(distance).post();
model.setObjective(Model.MINIMIZE, marks[m-1]);
```


Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions

LAAS

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \Longrightarrow$ AllDifferent (x, y, z)
- $x \neq y, x \leq y \Longrightarrow x<y$

LAAS

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \Longrightarrow$ AllDifferent (x, y, z)
- $x \neq y, x \leq y \Longrightarrow x<y$

$$
\text { Let } x \in\{1, \ldots, 10\}, y \in\{1, \ldots, 10\}
$$

LAAS

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \Longrightarrow$ AllDifferent (x, y, z)
- $x \neq y, x \leq y \Longrightarrow x<y$

$$
\text { Let } x \in\{1, \ldots, 10\}, y \in\{1, \ldots, 10\}
$$

- $x \neq y$ is consistent ($x=10$ has $\langle 10,9\rangle$ as support)

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \Longrightarrow$ AllDifferent (x, y, z)
- $x \neq y, x \leq y \Longrightarrow x<y$

$$
\text { Let } x \in\{1, \ldots, 10\}, y \in\{1, \ldots, 10\}
$$

- $x \neq y$ is consistent ($x=10$ has $\langle 10,9\rangle$ as support)
- $x \leq y$ is consistent ($x=10$ has $\langle 10,10\rangle$ as support)

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \Longrightarrow$ AllDifferent (x, y, z)
- $x \neq y, x \leq y \Longrightarrow x<y$

$$
\text { Let } x \in\{1, \ldots, 10\}, y \in\{1, \ldots, 10\}
$$

- $x \neq y$ is consistent ($x=10$ has $\langle 10,9\rangle$ as support)
- $x \leq y$ is consistent ($x=10$ has $\langle 10,10\rangle$ as support)
- $x<y$ is inconsistent

Implied constraint

Implied by the model, does not change the set of solutions, ex:

- $x \neq y, y \neq z, x \neq z \Longrightarrow$ AllDifferent (x, y, z)
- $x \neq y, x \leq y \Longrightarrow x<y$

$$
\text { Let } x \in\{1, \ldots, 10\}, y \in\{1, \ldots, 10\}
$$

- $x \neq y$ is consistent ($x=10$ has $\langle 10,9\rangle$ as support)
- $x \leq y$ is consistent ($x=10$ has $\langle 10,10\rangle$ as support)
- $x<y$ is inconsistent
- consistent with $x \in\{1, \ldots, 9\}, y \in\{2, \ldots, 10\}$

Implied Constraints: Golomb Ruler

Implied Constraints: Golomb Ruler

- distance $[i, j] \geq$ sum of $j-i$ distances

Implied Constraints: Golomb Ruler

- distance $[i, j] \geq$ sum of $j-i$ distances
- The distances are all different

Implied Constraints: Golomb Ruler

- distance $[i, j] \geq$ sum of j - i distances
- The distances are all different

Implied Constraints: Golomb Ruler

- distance $[i, j] \geq$ sum of $j-i$ distances
- The distances are all different distance $[i, j] \geq(j-i) *(j-i+1) / 2$

Implied Constraints: Golomb Ruler

- distance $[i, j] \geq$ sum of $j-i$ distances
- The distances are all different distance $[\mathrm{i}, \mathrm{j}] \geq(j-i) *(j-i+1) / 2$
- Same reasoning from the end (marks $[m-1]$)
- distance[i,j] \leq marks $[m]-$ sum of $m-1-j+i$ distances

Implied Constraints: Golomb Ruler

- distance $[i, j] \geq$ sum of $j-i$ distances
- The distances are all different distance $[\mathrm{i}, \mathrm{j}] \geq(j-i) *(j-i+1) / 2$
- Same reasoning from the end (marks $[m-1]$)
- distance[i,j] \leq marks $[m]-$ sum of $m-1-j+i$ distances
- distance $[\mathrm{i}, \mathrm{j}] \leq \operatorname{marks}[\mathrm{m}]-(m-1-j+i) *(m-j+i) / 2$

Implied Constraints: Golomb Ruler

- Implied constraints
- distance $[i, j] \geq(j-i) *(j-i+1) / 2$
- distance $[\mathrm{i}, \mathrm{j}] \leq \operatorname{marks}[\mathrm{m}]-(m-1-j+i) *(m-j+i) / 2$

Implied Constraints: Golomb Ruler

- Implied constraints
- distance $[i, j] \geq(j-i) *(j-i+1) / 2$
- distance $[\mathrm{i}, \mathrm{j}] \leq \operatorname{marks}[\mathrm{m}]-(m-1-j+i) *(m-j+i) / 2$
- How do we know that these constraints are useful (improving constraint propagation)

Implied Constraints: Golomb Ruler

- Implied constraints
- distance $[i, j] \geq(j-i) *(j-i+1) / 2$
- distance $[\mathrm{i}, \mathrm{j}] \leq \operatorname{marks}[\mathrm{m}]-(m-1-j+i) *(m-j+i) / 2$
- How do we know that these constraints are useful (improving constraint propagation)
- We need to combine the reasoning of two constraints (AllDifferent(distance) and distance $[\mathrm{i}, \mathrm{j}]=\sum_{k=i}^{j-1}$ distance $[\mathrm{k}, \mathrm{k}+1]$)

CNRS

Implied Constraints: Golomb Ruler

- Implied constraints
- distance $[i, j] \geq(j-i) *(j-i+1) / 2$
- distance $[\mathrm{i}, \mathrm{j}] \leq \operatorname{marks}[\mathrm{m}]-(m-1-j+i) *(m-j+i) / 2$
- How do we know that these constraints are useful (improving constraint propagation)
- We need to combine the reasoning of two constraints (AllDifferent (distance) and distance $[\mathrm{i}, \mathrm{j}]=\sum_{k=i}^{j-1}$ distance $[\mathrm{k}, \mathrm{k}+1]$)
- Domain reduction is not sufficient to "communicate" between the two constraints
- The implied constraints reduce the domains at the root node

Implied Constraints: Golomb Ruler

- Implied constraints
- distance $[i, j] \geq(j-i) *(j-i+1) / 2$
- distance $[\mathrm{i}, \mathrm{j}] \leq \operatorname{marks}[\mathrm{m}]-(m-1-j+i) *(m-j+i) / 2$
- How do we know that these constraints are useful (improving constraint propagation)
- We need to combine the reasoning of two constraints (AllDifferent (distance) and distance $[\mathrm{i}, \mathrm{j}]=\sum_{k=i}^{j-1}$ distance $[\mathrm{k}, \mathrm{k}+1]$)
- Domain reduction is not sufficient to "communicate" between the two constraints
- The implied constraints reduce the domains at the root node
- In doubt, just try!

```
import sys
from Numberjack import *
m = int(sys.argv[1]) if len(sys.argv)>1 else 6
n = 2** (m - 1)
marks = VarArray(m, n, 'm')
dmap = dict([((i,j), marks[j] - marks[i]) for i in range(m-1) for j in range(i+1,m)])
distance = [dmap[(i,j)] for i in range(m-1) for j in range(i+1,m)]
lbs = [(j - i) * (j - i + 1) / 2 for i in range(m-1) for j in range(i+1,m)]
ubs = [marks[-1] - (m - 1 - j + i) * (m - j + i) / 2 for i in range(m-1) for j in range(i+1,m)]
model = Model(
    Minimise(marks[-1]), # objective function
    [marks[i-1] < marks[i] for i in range(1, m)],
    marks[0] == 0,
    distance[0] < distance[-1],
    AllDiff(distance),
    [d >= l for d,l in zip(distance, lbs)],
    [d <= u for d,u in zip(distance, ubs)],
    [dmap}[(i,j)]== dmap[(i,j-1)] + dmap[(j-1,j)] for i in range(m-2) for j in range(i+2,m)
)
solver = model.load('Mistral2',marks)
if solver.solve():
    print marks, [d.get_value() for d in distance]
```


LAAS

```
Model model = new Model();
IntVar[] marks = model.intVarArray("m", m, 0, n);
IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);
% IntVar[] [] dmap = new IntVar[m] [m];
int k = 0;
for(int i=0; i<m-1; ++i) {
    model.arithm(marks[i], "<", marks[i+1]).post();
    for(int j=i+1; j<m; ++j) {
                dmap[i][j] = distance[k];
            model.arithm(distance[k], "<=", marks[m - 1], "-", ((m - 1 - j + i)* (m - j + i)) / 2).post();
            model.arithm(distance[k], ">=", (j - i) * (j - i + 1) / 2).post();
            model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();
    }
    model.arithm(marks[0], "=", 0).post();
    model.arithm(distance[0], "<", distance[distance.length-1]).post();
}
% for(int i=0; i<m-2; ++i)
% for(int j=i+2; j<m; ++j)
% model.arithm(dmap[i][j], "=", dmap[i][j-1], "+", dmap[j-1][j]).post();
model.allDifferent(distance).post();
model.setObjective(Model.MINIMIZE, marks[m-1]);
```

-

Conclusions

Good modeling practices

Good modeling practices

- What are the variables, what are the values?

Conclusions

Good modeling practices

- What are the variables, what are the values?
- Constraints will follow

Conclusions

Good modeling practices

- What are the variables, what are the values?
- Constraints will follow
- Defines the shape of the search tree

Conclusions

Good modeling practices

- What are the variables, what are the values?
- Constraints will follow
- Defines the shape of the search tree
- Key principle: strengthen constraint propagation
- Global constraints
- Implied constraints
- Symmetry breaking

Master class on hybrid optimisation Toulouse June 4th and 5th

> Pierre Bonami (Université d'Aix-Marseille) Mixed-Integer Linear and Nonlinear Programming Methods

Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete Optimization, Constraint programming, and Integer Programming
John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming / Constraint Programming Methods
Paul Shaw (IBM Research) Combinations of local search and constraint programming
Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT solvers

Master class on hybrid optimisation Toulouse June 4th and 5th

> Pierre Bonami (Université d'Aix-Marseille) Mixed-Integer Linear and Nonlinear Programming Methods

Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete Optimization, Constraint programming, and Integer Programming
John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming / Constraint Programming Methods
Paul Shaw (IBM Research) Combinations of local search and constraint programming
Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT solvers

Free registration, students' accommodation covered!

