
Modeling and Solving Constraint
Problems

Emmanuel Hebrard

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Avant propos

Introduction to constraint programming (no pre-requisite)

I Or almost none

I Constraint programming = combinatorial branch & bound plus a lot of jargon

Language-level modeling: stating and solving a problem with an off-the-shelf toolkit

I Notions of model and solver

I I will not talk about user-defined propagator

I I will not talk about search strategies (though there are things to do at the language level)

The minimum about solving methods to allow for clever modeling

I It turns out, it is already a lot!

1 / 46

Outline

1 Language

2 Variables

3 Constraints

4 Modeling
Ex: Golomb Ruler

2 / 46

Outline

1 Language

2 Variables

3 Constraints

4 Modeling

Language 3 / 46

Constraint Optimization Problem

Variables: with finite discrete domains (e.g. x ∈ {2, 3, 5, 7, 11, 13}, y ∈ [0, 100000])

Constraints: any relation between variables (e.g. x = (
√
y mod 15))

Objective: distinguished variable to minimize/maximize

Language 4 / 46

Constraint Optimization Problem

Variables: with finite discrete domains (e.g. x ∈ {2, 3, 5, 7, 11, 13}, y ∈ [0, 100000])

Constraints: any relation between variables (e.g. x = (
√
y mod 15))

Objective: distinguished variable to minimize/maximize

Language 4 / 46

Constraint Optimization Problem

Variables: with finite discrete domains (e.g. x ∈ {2, 3, 5, 7, 11, 13}, y ∈ [0, 100000])

Constraints: any relation between variables (e.g. x = (
√
y mod 15))

Objective: distinguished variable to minimize/maximize

Language 4 / 46

Constraint Optimization Problem

Variables: with finite discrete domains (e.g. x ∈ {2, 3, 5, 7, 11, 13}, y ∈ [0, 100000])

Constraints: any relation between variables (e.g. x = (
√
y mod 15))

Objective: distinguished variable to minimize/maximize

Language 4 / 46

Map Coloring

blue
green

blue
red

blue
yellow
red
green

blue
red

Language 5 / 46

Map Coloring

blue
green

blue
red

blue
yellow
red
green

blue
red

Language 5 / 46

Map Coloring

xf

D(xf) : blue
green

xs

D(xs) : blue
red

xi

D(xi) : blue
red

xe

D(xe) : blue
yellow
red
green

6=
6=

6=

6=

Language 6 / 46

Map Coloring (Numberjack)

from Numberjack import *

france = Variable([’blue’,’green’], ’france’)

switzerland = Variable([’blue’,’red’], ’switzerland’)

spain = Variable([’blue’,’yellow’,’red’,’green’], ’spain’)

italy = Variable([’blue’,’red’], ’italy’)

model = Model(

france != switzerland,

france != italy,

france != spain,

italy != switzerland

)

solver = model.load(’Mistral2’)

if solver.solve():

for var in [france, switzerland, spain, italy]:

print var.name(), ’in’, var.get_value()

Language 7 / 46

Map Coloring (Choco)

static final String[] colorname = {"red", "blue", "green", "yellow"};

static final Map<String, Integer> colorindex = new HashMap<String, Integer>();

public static void main(String[] args) {

for(int i=0; i<colorname.length; ++i) colorindex.put(colorname[i], i);

Model model = new Model("Map coloring example");

IntVar france = model.intVar("france", new int[]{colorindex.get("blue"), colorindex.get("green")});

IntVar switzerland = model.intVar("switzerland", new int[]{colorindex.get("blue"), colorindex.get("red")});

IntVar spain = model.intVar("spain", new int[]{colorindex.get("blue"), colorindex.get("yellow"), colorindex.get("red"), colorindex.get("green")});

IntVar italy = model.intVar("italy", new int[]{colorindex.get("blue"), colorindex.get("red")});

model.arithm(france, "!=", switzerland).post();

model.arithm(france, "!=", italy).post();

model.arithm(france, "!=", spain).post();

model.arithm(italy, "!=", switzerland).post();

if(model.getSolver().solve()){

for(IntVar x : new IntVar[]{france, switzerland, spain, italy})

System.out.printf("%s in %s\n", x.getName(), color_name[x.getValue()]);

}

}

Language 8 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit

(or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Constraint Toolkits

Declare variables and their domains e.g.,
france = Variable([’blue’,’green’], ’france’)

Declare constraints e.g., france != switzerland

I Among the constraints defined in the language/toolkit (or user-defined!)

I Linear constraints, arithmetic and logic operators (=, 6=,≤, >,∨,∧, =⇒ ,%,×,+, /, . . .)

I Some keyworded relations AllDifferent, Element, etc.

I Any Expression tree of the above

Language 9 / 46

Outline

1 Language

2 Variables

3 Constraints

4 Modeling

Variables 10 / 46

Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46

Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46

Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?

I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46

Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46

Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46

Choice of representation

The same problem might be mapped to many models

The most important and fundamental choice is the choice of variable
viewpoint [Barbara Smith]

I TSP: xij ↔ do we use arc (i , j)? or xi ↔ what it the i-th visited city?
I Constraints follow from the choice of variable viewpoint

Sometimes the best choice is clear, but not always

Consider the graph coloring example

Variables 11 / 46

Choice of representation

xf xs

xixe

6= 6=

6=

6=

6==xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

Choice of representation

xf xs

xixe

6= 6=

6=

6=

6==xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

Choice of representation

xf s

xie

6= 6=

6=

6=6=

=xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

Choice of representation

xf s

xie

6= 6=

6=

6=

6=

=

xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

Choice of representation

6= 6=

6=

6=6==

xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

Choice of representation

6= 6=

6=

6=6==

xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

Choice of representation

6= 6=

6=

6=6==

xe,s ∈ {=, 6=}

xe,i ∈ {=, 6=}

Zykov recurrence [Zykov 49]: take a non-edge
e, s. In the optimal coloring:

I either e and s take a different color, so adding the
edge would not hurt

I or e and s take the same color, so merging them
(adding an equality constraint) would not hurt

Instead of assigning colors to nodes, we can
assign {=, 6=} to non-edges

No color symmetry anymore!

But stating the constraints is difficult

Variables 12 / 46

The best variable viewpoint is the one that...

...induces the smallest search tree

...induces the “best” set of constraints

What is a good constraint set?

Variables 13 / 46

The best variable viewpoint is the one that...

...induces the smallest search tree

...induces the “best” set of constraints

What is a good constraint set?

Variables 13 / 46

The best variable viewpoint is the one that...

...induces the smallest search tree

...induces the “best” set of constraints

What is a good constraint set?

Variables 13 / 46

The best variable viewpoint is the one that...

...induces the smallest search tree

...induces the “best” set of constraints

What is a good constraint set?

Variables 13 / 46

Outline

1 Language

2 Variables

3 Constraints
Expression tree
Global constraints
Constraint solving

4 Modeling

Constraints 14 / 46

Combining constraints (logically)

Most logic operators

I can be used as a relation (x 6= y)...
I or as a predicate ((x 6= y) =⇒ y ≤ 12)

Two different constraints: x 6= y and (x 6= y) ⇐⇒ z (reification)

(x 6= y) =⇒ y ≤ 12 encoded as (x 6= y) ⇐⇒ z

z =⇒ (y ≤ 12)

Which you can write (x 6= y) =⇒ y ≤ 12 (and let the system insert extra variables)

Constraints 15 / 46

Combining constraints (logically)

Most logic operators

I can be used as a relation (x 6= y)

...
I or as a predicate ((x 6= y) =⇒ y ≤ 12)

Two different constraints: x 6= y and (x 6= y) ⇐⇒ z (reification)

(x 6= y) =⇒ y ≤ 12 encoded as (x 6= y) ⇐⇒ z

z =⇒ (y ≤ 12)

Which you can write (x 6= y) =⇒ y ≤ 12 (and let the system insert extra variables)

Constraints 15 / 46

Combining constraints (logically)

Most logic operators

I can be used as a relation (x 6= y)...
I or as a predicate ((x 6= y) =⇒ y ≤ 12)

Two different constraints: x 6= y and (x 6= y) ⇐⇒ z (reification)

(x 6= y) =⇒ y ≤ 12 encoded as (x 6= y) ⇐⇒ z

z =⇒ (y ≤ 12)

Which you can write (x 6= y) =⇒ y ≤ 12 (and let the system insert extra variables)

Constraints 15 / 46

Combining constraints (logically)

Most logic operators

I can be used as a relation (x 6= y)...
I or as a predicate ((x 6= y) =⇒ y ≤ 12)

Two different constraints: x 6= y and (x 6= y) ⇐⇒ z (reification)

(x 6= y) =⇒ y ≤ 12 encoded as (x 6= y) ⇐⇒ z

z =⇒ (y ≤ 12)

Which you can write (x 6= y) =⇒ y ≤ 12 (and let the system insert extra variables)

Constraints 15 / 46

Combining constraints (logically)

Most logic operators

I can be used as a relation (x 6= y)...
I or as a predicate ((x 6= y) =⇒ y ≤ 12)

Two different constraints: x 6= y and (x 6= y) ⇐⇒ z (reification)

(x 6= y) =⇒ y ≤ 12 encoded as (x 6= y) ⇐⇒ z

z =⇒ (y ≤ 12)

Which you can write (x 6= y) =⇒ y ≤ 12 (and let the system insert extra variables)

Constraints 15 / 46

Combining constraints (functionally)

There are also function operators that must be combined similarly

I For instance (|x − y | ∗ z) ≤ (z + 12)

(|x − y | ∗ z) ≤ (z + 12) encoded as (x − y) = a1

|a1| = a2

a2 ∗ z = a3

z + 12 = a4

a3 ≤ a4

Constraints 16 / 46

Combining constraints (functionally)

There are also function operators that must be combined similarly

I For instance (|x − y | ∗ z) ≤ (z + 12)

(|x − y | ∗ z) ≤ (z + 12) encoded as (x − y) = a1

|a1| = a2

a2 ∗ z = a3

z + 12 = a4

a3 ≤ a4

Constraints 16 / 46

Expression Tree

Constraints - Root of the expression tree

C1 = (X+Y < 5) | (X+3 < Y)

C2 = AllDiff([x,y,z])

C3 = Sum([a,b,c,d]) >= e

Predicates & functions - Internal nodes

P = X+Y # arythmetic value

Q = X+3 <= Y # truth (logic) value

Variables - Leaves of the expression tree

X = Variable(0,10)

X = Variable([1,3,5,7])

Constraints 17 / 46

XKCD Knapsack

Constraints 18 / 46

XKCD Knapsack

from Numberjack import *

price = [215, 275, 335, 355, 420, 580]

appetizers = ["Mixed Fruit", "French Fries", "Side Salad",

"Hot Wings", "Mozzarella Sticks", "Sample Plate"]

total = 1505

num_appetizers = len(appetizers)

quantities = [Variable(0, 1505/price[i], ’#’+appetizers[i])

for i in range(num_appetizers)]

model = Model(

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

)

solver = model.load(’Mistral2’)

solver.startNewSearch()

while solver.getNextSolution() == SAT:

print "\nSOLUTION:\n", "\n".join("%s x %s ($%.2lf)" % (quantities[i], \

appetizers[i], price[i] / 100.0) for i in xrange(num_appetizers))

Constraints 19 / 46

XKCD Knapsack

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

=

∑
total

∗ . . . ∗

q1 p1 qn pn

Constraints 20 / 46

XKCD Knapsack

Sum([quantities[i] * price[i] for i in range(num_appetizers)]) == total

=

∑
total

∗ . . . ∗

q1 p1 qn pn

Constraints 20 / 46

Solution

Solution 1:

7 × Mixed Fruit ($2.15)
0 × French Fries ($2.75)
0 × Side Salad ($3.35)
0 × Hot Wings ($3.55)
0 × Mozzarella Sticks ($4.20)
0 × Sample Plate ($5.80)

Solution 2:

1 × Mixed Fruit ($2.15)
0 × French Fries ($2.75)
0 × Side Salad ($3.35)
2 × Hot Wings ($3.55)
0 × Mozzarella Sticks ($4.20)
1 × Sample Plate ($5.80)

Constraints 21 / 46

Global constraints

CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent(x1, . . . , xn) ⇐⇒ ∀1 ≤ i < j ≤ n xi 6= xj

x̄ = 3, 5, 1, 2, 7 satisfies AllDifferent
x̄ = 3, 5, 1, 2, 5 does not satisfy AllDifferent

Element

Element(x0, . . . , xn−1, y , z) ⇐⇒ xy = z

x̄ = 3, 5, 1, 2, 5, y = 1, z = 5 satisfies Element
x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element

Constraints 22 / 46

Global constraints

CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent(x1, . . . , xn) ⇐⇒ ∀1 ≤ i < j ≤ n xi 6= xj

x̄ = 3, 5, 1, 2, 7 satisfies AllDifferent
x̄ = 3, 5, 1, 2, 5 does not satisfy AllDifferent

Element

Element(x0, . . . , xn−1, y , z) ⇐⇒ xy = z

x̄ = 3, 5, 1, 2, 5, y = 1, z = 5 satisfies Element
x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element

Constraints 22 / 46

Global constraints

CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent(x1, . . . , xn) ⇐⇒ ∀1 ≤ i < j ≤ n xi 6= xj

x̄ = 3, 5, 1, 2, 7 satisfies AllDifferent
x̄ = 3, 5, 1, 2, 5 does not satisfy AllDifferent

Element

Element(x0, . . . , xn−1, y , z) ⇐⇒ xy = z

x̄ = 3, 5, 1, 2, 5, y = 1, z = 5 satisfies Element
x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element

Constraints 22 / 46

Global constraints

CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent(x1, . . . , xn) ⇐⇒ ∀1 ≤ i < j ≤ n xi 6= xj

x̄ = 3, 5, 1, 2, 7 satisfies AllDifferent
x̄ = 3, 5, 1, 2, 5 does not satisfy AllDifferent

Element

Element(x0, . . . , xn−1, y , z) ⇐⇒ xy = z

x̄ = 3, 5, 1, 2, 5, y = 1, z = 5 satisfies Element
x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element

Constraints 22 / 46

Global constraints

CP languages contain a number of keywords for specific relations on variables

AllDifferent

AllDifferent(x1, . . . , xn) ⇐⇒ ∀1 ≤ i < j ≤ n xi 6= xj

x̄ = 3, 5, 1, 2, 7 satisfies AllDifferent
x̄ = 3, 5, 1, 2, 5 does not satisfy AllDifferent

Element

Element(x0, . . . , xn−1, y , z) ⇐⇒ xy = z

x̄ = 3, 5, 1, 2, 5, y = 1, z = 5 satisfies Element
x̄ = 3, 5, 1, 2, 5, y = 2, z = 5 does not satisfy Element

Constraints 22 / 46

Map Coloring

xf

D(xf) : blue
green

xs

D(xs) : blue
red

xi

D(xi) : blue
red

xe

D(xe) : blue
yellow
red
green

6=
6=

6=

6=

Alldifferent

Constraints 23 / 46

Map Coloring

xf

D(xf) : blue
green

xs

D(xs) : blue
red

xi

D(xi) : blue
red

xe

D(xe) : blue
yellow
red
green

6=

6=

6=

6=

Alldifferent

Constraints 23 / 46

Constraint solver

Search

Develop a search tree (depth first).

Select a variable x , a value v in its domain and branch on x = v or x 6= v

Inference

At every node of the tree, the domains of the variables are reduced

Every constraint makes local deductions

Consistent iff every value of every variable is in a support

Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation

Constraints 24 / 46

Constraint solver

Search

Develop a search tree (depth first).

Select a variable x , a value v in its domain and branch on x = v or x 6= v

Inference

At every node of the tree, the domains of the variables are reduced

Every constraint makes local deductions

Consistent iff every value of every variable is in a support

Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation

Constraints 24 / 46

Constraint solver

Search

Develop a search tree (depth first).

Select a variable x , a value v in its domain and branch on x = v or x 6= v

Inference

At every node of the tree, the domains of the variables are reduced

Every constraint makes local deductions

Consistent iff every value of every variable is in a support

Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation

Constraints 24 / 46

Constraint solver

Search

Develop a search tree (depth first).

Select a variable x , a value v in its domain and branch on x = v or x 6= v

Inference

At every node of the tree, the domains of the variables are reduced

Every constraint makes local deductions

Consistent iff every value of every variable is in a support

Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation

Constraints 24 / 46

Constraint solver

Search

Develop a search tree (depth first).

Select a variable x , a value v in its domain and branch on x = v or x 6= v

Inference

At every node of the tree, the domains of the variables are reduced

Every constraint makes local deductions

Consistent iff every value of every variable is in a support

Domain reductions from a constraint might trigger reduction by another constraint

constraint propagation

Constraints 24 / 46

Example: binary constraint

What inference can the inequality xf 6= xe make?

A support: a value v ∈ D(xf) and a value w ∈ D(xe) with v 6= w

Propagation of xf 6= xe

As long as the domain D(xf) has two distinct values, then xe could take any value

xf ∈ {b, r}, xe ∈ {b, r, g}: there is no correct domain reduction

If D(xf) = {v} then xe cannot take the value v

xf ∈ {b}, xe ∈ {b, r, g} =⇒ xf ∈ {b}, xe ∈ {r, g}

Constraints 25 / 46

Example: binary constraint

What inference can the inequality xf 6= xe make?

A support: a value v ∈ D(xf) and a value w ∈ D(xe) with v 6= w

Propagation of xf 6= xe

As long as the domain D(xf) has two distinct values, then xe could take any value

xf ∈ {b, r}, xe ∈ {b, r, g}: there is no correct domain reduction

If D(xf) = {v} then xe cannot take the value v

xf ∈ {b}, xe ∈ {b, r, g} =⇒ xf ∈ {b}, xe ∈ {r, g}

Constraints 25 / 46

Example: binary constraint

What inference can the inequality xf 6= xe make?

A support: a value v ∈ D(xf) and a value w ∈ D(xe) with v 6= w

Propagation of xf 6= xe

As long as the domain D(xf) has two distinct values, then xe could take any value

xf ∈ {b, r}, xe ∈ {b, r, g}: there is no correct domain reduction

If D(xf) = {v} then xe cannot take the value v

xf ∈ {b}, xe ∈ {b, r, g} =⇒ xf ∈ {b}, xe ∈ {r, g}

Constraints 25 / 46

Example: binary constraint

What inference can the inequality xf 6= xe make?

A support: a value v ∈ D(xf) and a value w ∈ D(xe) with v 6= w

Propagation of xf 6= xe

As long as the domain D(xf) has two distinct values, then xe could take any value

xf ∈ {b, r}, xe ∈ {b, r, g}: there is no correct domain reduction

If D(xf) = {v} then xe cannot take the value v

xf ∈ {b}, xe ∈ {b, r, g} =⇒ xf ∈ {b}, xe ∈ {r, g}

Constraints 25 / 46

Example: binary constraint

What inference can the inequality xf 6= xe make?

A support: a value v ∈ D(xf) and a value w ∈ D(xe) with v 6= w

Propagation of xf 6= xe

As long as the domain D(xf) has two distinct values, then xe could take any value

xf ∈ {b, r}, xe ∈ {b, r, g}: there is no correct domain reduction

If D(xf) = {v} then xe cannot take the value v

xf ∈ {b}, xe ∈ {b, r, g} =⇒ xf ∈ {b}, xe ∈ {r, g}

Constraints 25 / 46

Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {

b,

r}

xe ∈ {

b,

r, g, y} xi ∈ {

b, r

}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 26 / 46

Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 26 / 46

Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {

b,

r}

xe ∈ {

b,

r, g, y} xi ∈ {

b,

r}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 26 / 46

Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {

b,

r}

xe ∈ {

b,

r, g, y} xi ∈ {

b, r

}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 26 / 46

Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {

b,

r}

xe ∈ {

b,

r, g, y} xi ∈ {

b, r

}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 26 / 46

Search Tree

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {b} xs ∈ {

b,

r}

xe ∈ {

b,

r, g, y} xi ∈ {

b, r

}

xf = b

Fail!
xf ∈ {g} xs ∈ {b, r}

xe ∈ {b, r, y} xi ∈ {b, r}

xf 6= b

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 26 / 46

Example: global constraint

xf xs

xi

6=

6=

6=

xf ∈ {b, g}
xs ∈ {b, r}
xi ∈ {b, r}

Every inequality is consistent

AllDifferent is not consistent!

Propagation of AllDifferent(x̄)

A support is a perfect matching in the graph

The edge (xf , b) does not belong to any perfect matching

AllDifferent(xf , xs , xi) is consistent for xf ∈ {g} xs ∈ {b, r}
xi ∈ {b, r}

xf

xs

xi

g

b

r

Constraints 27 / 46

Example: global constraint

xf xs

xi

6=

6=

6=

xf ∈ {b, g}
xs ∈ {b, r}
xi ∈ {b, r}

Every inequality is consistent

AllDifferent is not consistent!

Propagation of AllDifferent(x̄)

A support is a perfect matching in the graph

The edge (xf , b) does not belong to any perfect matching

AllDifferent(xf , xs , xi) is consistent for xf ∈ {g} xs ∈ {b, r}
xi ∈ {b, r}

xf

xs

xi

g

b

r

Constraints 27 / 46

Example: global constraint

xf xs

xi

6=

6=

6=

xf ∈ {b, g}
xs ∈ {b, r}
xi ∈ {b, r}

Every inequality is consistent

AllDifferent is not consistent!

Propagation of AllDifferent(x̄)

A support is a perfect matching in the graph

The edge (xf , b) does not belong to any perfect matching

AllDifferent(xf , xs , xi) is consistent for xf ∈ {g} xs ∈ {b, r}
xi ∈ {b, r}

xf

xs

xi

g

b

r

Constraints 27 / 46

Example: global constraint

xf xs

xi

6=

6=

6=

xf ∈ {b, g}
xs ∈ {b, r}
xi ∈ {b, r}

Every inequality is consistent

AllDifferent is not consistent!

Propagation of AllDifferent(x̄)

A support is a perfect matching in the graph

The edge (xf , b) does not belong to any perfect matching

AllDifferent(xf , xs , xi) is consistent for xf ∈ {g} xs ∈ {b, r}
xi ∈ {b, r}

xf

xs

xi

g

b

r

Constraints 27 / 46

Example: global constraint

xf xs

xi

6=

6=

6=

xf ∈ {b, g}
xs ∈ {b, r}
xi ∈ {b, r}

Every inequality is consistent

AllDifferent is not consistent!

Propagation of AllDifferent(x̄)

A support is a perfect matching in the graph

The edge (xf , b) does not belong to any perfect matching

AllDifferent(xf , xs , xi) is consistent for xf ∈ {g} xs ∈ {b, r}
xi ∈ {b, r}

xf

xs

xi

g

b

r

Constraints 27 / 46

Search Tree (AllDifferent)

xf ∈ {b, g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 28 / 46

Search Tree (AllDifferent)

xf ∈ {

b,

g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 28 / 46

Search Tree (AllDifferent)

xf ∈ {

b,

g} xs ∈ {b, r}

xe ∈ {b, r, g, y} xi ∈ {b, r}

xf ∈ {g} xs ∈ {b}

xe ∈ {b, r, y} xi ∈ {r}

xs = b

Constraints 28 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)

Constraints 29 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)

Constraints 29 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)

Constraints 29 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)

Constraints 29 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)

Constraints 29 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger!

(and the slower...)

Constraints 29 / 46

Propagation algorithm

Every constraint has a propagation algorithm

How do we know what inference we can expect from a propagation algorithm?

Arc consistency

Every possible deduction w.r.t a single constraint on its variable’s domain

For every value v of every variable x

I Does there exist a support for x = v (a solution of the constraint involving x = v)

I Otherwise, remove v from D(x)

The bigger (more global) the stronger! (and the slower...)

Constraints 29 / 46

Outline

1 Language

2 Variables

3 Constraints

4 Modeling
Ex: Golomb Ruler

Modeling 30 / 46

The art of modeling

Techniques to strenghthen propagation

Common sub-expressions

Global constraints

Implied constraints

Symmetry breaking

Dominance

Modeling 31 / 46

Golomb Ruler

Problem definition

Place m marks on a ruler

Distance between each pair of marks is different

Goal is to minimise the size of the ruler

Proposed by Sidon [1932] then independently by Golomb and Babcock

0 1 4 6

1 3 2

4

5

6

Modeling 32 / 46

A First Model (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

distance = [Abs(marks[i] - marks[j]) for i in range(1, m) for j in range(i)]

model = Model(

Minimise(Max(marks)), # objective function

[m1 != m2 for m1,m2 in pair_of(marks)],

[d1 != d2 for d1,d2 in pair_of(distance)]

)

solver = model.load(’Mistral2’, marks)

if solver.solve():

print marks, [d.get_value() for d in distance]

Modeling 33 / 46

A First Model (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

int k = 0;

for(int i=0; i<m; ++i) {

for(int j=i+1; j<m; ++j) {

model.distance(marks[i], marks[j], "=", distance[k++]).post();

model.arithm(marks[i], "!=", marks[j]).post(); }}

for(int i=0; i<distance.length; ++i)

for(int j=i+1; j<distance.length; ++j)

model.arithm(distance[i], "!=", distance[j]).post();

IntVar objective = model.intVar("obj", 0, n);

model.max(objective, marks).post();

model.setObjective(Model.MINIMIZE, objective);

Modeling 34 / 46

Branch & Bound

An objective variable

model.setObjective(Model.MINIMIZE, objective);

The upper bound is updated when a new solution is found

The lower bound is maintained via constraint propagation

model.max(objective, marks).post();

Different models may entail different lower bounds for the same objective function

Modeling 35 / 46

Branch & Bound

An objective variable

model.setObjective(Model.MINIMIZE, objective);

The upper bound is updated when a new solution is found

The lower bound is maintained via constraint propagation

model.max(objective, marks).post();

Different models may entail different lower bounds for the same objective function

Modeling 35 / 46

Branch & Bound

An objective variable

model.setObjective(Model.MINIMIZE, objective);

The upper bound is updated when a new solution is found

The lower bound is maintained via constraint propagation

model.max(objective, marks).post();

Different models may entail different lower bounds for the same objective function

Modeling 35 / 46

Branch & Bound

An objective variable

model.setObjective(Model.MINIMIZE, objective);

The upper bound is updated when a new solution is found

The lower bound is maintained via constraint propagation

model.max(objective, marks).post();

Different models may entail different lower bounds for the same objective function

Modeling 35 / 46

Global Constraints (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

distance = [Abs(marks[i] - marks[j]) for i in range(m-1) for j in range(i+1,m)]

model = Model(

Minimise(Max(marks)), # objective function

AllDiff(marks),

AllDiff(distance)

)

solver = model.load(’Mistral2’, marks)

if solver.solve():

print marks, [d.get_value() for d in distance]

Modeling 36 / 46

Global Constraints (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

int k = 0;

for(int i=0; i<m; ++i)

for(int j=i+1; j<m; ++j)

model.distance(marks[i], marks[j], "=", distance[k++]).post();

model.allDifferent(marks).post();

model.allDifferent(distance).post();

IntVar objective = model.intVar("obj", 0, n);

model.max(objective, marks).post();

model.setObjective(Model.MINIMIZE, objective);

Modeling 37 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4

x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4

x3 x2 x4 x1
0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4

x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4

x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking

Solution symmetries ⇒ symmetric (suboptimal) branches in the search tree

x1 x2 x3 x4

x3 x2 x4 x1

0 1 4 6

1 3 2

4

5

6

0 2 5 6

2 3 1

5

4

6

I Variable symmetries: marks, distance

I We can swap the marks or the distances of
a solution (but not both)

I Force an arbitrary ordering

F marks[1] < marks[2] < . . . < marks[m]

I Distances are still symmetric by reflection

F distance[0,1] < distance[m − 2,m − 1]

Modeling 38 / 46

Symmetry breaking (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

distance = [marks[j] - marks[i] for i in range(m-1) for j in range(i+1,m)]

model = Model(

Minimise(marks[-1]), # objective function

[marks[i-1] < marks[i] for i in range(1, m)],

marks[0] == 0,

distance[0] < distance[-1],

AllDiff(distance)

)

solver = model.load(’Mistral2’, marks)

solver.setHeuristic(’MinDomainMinVal’);

if solver.solve():

print marks, [d.get_value() for d in distance]

Modeling 39 / 46

Symmetry breaking (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

int k = 0;

for(int i=0; i<m-1; ++i) {

model.arithm(marks[i], "<", marks[i+1]).post();

for(int j=i+1; j<m; ++j)

model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();

model.arithm(marks[0], "=", 0).post();

model.arithm(distance[0], "<", distance[distance.length-1]).post();

}

model.allDifferent(distance).post();

model.setObjective(Model.MINIMIZE, marks[m-1]);

Modeling 40 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions

, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent
I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent
I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent
I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent
I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent
I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent

I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints

Implied constraint

Implied by the model, does not change the set of solutions, ex:

x 6= y , y 6= z , x 6= z =⇒ AllDifferent(x , y , z)

x 6= y , x ≤ y =⇒ x < y

Let x ∈ {1, . . . , 10}, y ∈ {1, . . . , 10}

x 6= y is consistent (x = 10 has 〈10, 9〉 as support)

x ≤ y is consistent (x = 10 has 〈10, 10〉 as support)

x < y is inconsistent
I consistent with x ∈ {1, . . . , 9}, y ∈ {2, . . . , 10}

Modeling 41 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3≥ 6

1 2 3

≤ marks[m-1] - 4≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different

distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3

≥ 6

1 2 3

≤ marks[m-1] - 4≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different

distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3

≥ 6

1 2 3

≤ marks[m-1] - 4≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different

distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3

≥ 6

1 2 3

≤ marks[m-1] - 4≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different

distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3

≥ 6

1 2 3

≤ marks[m-1] - 4≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3≥ 6

1 2 3

≤ marks[m-1] - 4

≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

0 1 2 3 4 5

≥ 3≥ 6

1 2 3

≤ marks[m-1] - 4

≤ marks[m-1] − 10

1233

distance[i,j] ≥ sum of j − i distances

The distances are all different distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2

Same reasoning from the end (marks[m − 1])

I distance[i,j] ≤ marks[m]− sum of m − 1− j + i distances

I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

Modeling 42 / 46

Implied Constraints: Golomb Ruler

Implied constraints

I distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2
I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

How do we know that these constraints are useful (improving constraint propagation)

We need to combine the reasoning of two constraints (AllDifferent(distance)
and distance[i,j] =

∑j−1
k=i distance[k,k+1])

Domain reduction is not sufficient to “communicate” between the two constraints

I The implied constraints reduce the domains at the root node

In doubt, just try!

Modeling 43 / 46

Implied Constraints: Golomb Ruler

Implied constraints

I distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2
I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

How do we know that these constraints are useful (improving constraint propagation)

We need to combine the reasoning of two constraints (AllDifferent(distance)
and distance[i,j] =

∑j−1
k=i distance[k,k+1])

Domain reduction is not sufficient to “communicate” between the two constraints

I The implied constraints reduce the domains at the root node

In doubt, just try!

Modeling 43 / 46

Implied Constraints: Golomb Ruler

Implied constraints

I distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2
I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

How do we know that these constraints are useful (improving constraint propagation)

We need to combine the reasoning of two constraints (AllDifferent(distance)
and distance[i,j] =

∑j−1
k=i distance[k,k+1])

Domain reduction is not sufficient to “communicate” between the two constraints

I The implied constraints reduce the domains at the root node

In doubt, just try!

Modeling 43 / 46

Implied Constraints: Golomb Ruler

Implied constraints

I distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2
I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

How do we know that these constraints are useful (improving constraint propagation)

We need to combine the reasoning of two constraints (AllDifferent(distance)
and distance[i,j] =

∑j−1
k=i distance[k,k+1])

Domain reduction is not sufficient to “communicate” between the two constraints

I The implied constraints reduce the domains at the root node

In doubt, just try!

Modeling 43 / 46

Implied Constraints: Golomb Ruler

Implied constraints

I distance[i,j] ≥ (j − i) ∗ (j − i + 1)/2
I distance[i,j] ≤ marks[m]− (m − 1− j + i) ∗ (m − j + i)/2

How do we know that these constraints are useful (improving constraint propagation)

We need to combine the reasoning of two constraints (AllDifferent(distance)
and distance[i,j] =

∑j−1
k=i distance[k,k+1])

Domain reduction is not sufficient to “communicate” between the two constraints

I The implied constraints reduce the domains at the root node

In doubt, just try!

Modeling 43 / 46

Implied Constraints (Numberjack)

import sys

from Numberjack import *

m = int(sys.argv[1]) if len(sys.argv)>1 else 6

n = 2 ** (m - 1)

marks = VarArray(m, n, ’m’)

dmap = dict([((i,j), marks[j] - marks[i]) for i in range(m-1) for j in range(i+1,m)])

distance = [dmap[(i,j)] for i in range(m-1) for j in range(i+1,m)]

lbs = [(j - i) * (j - i + 1) / 2 for i in range(m-1) for j in range(i+1,m)]

ubs = [marks[-1] - (m - 1 - j + i) * (m - j + i) / 2 for i in range(m-1) for j in range(i+1,m)]

model = Model(

Minimise(marks[-1]), # objective function

[marks[i-1] < marks[i] for i in range(1, m)],

marks[0] == 0,

distance[0] < distance[-1],

AllDiff(distance),

[d >= l for d,l in zip(distance, lbs)],

[d <= u for d,u in zip(distance, ubs)],

[dmap[(i,j)] == dmap[(i,j-1)] + dmap[(j-1,j)] for i in range(m-2) for j in range(i+2,m)]

)

solver = model.load(’Mistral2’,marks)

if solver.solve():

print marks, [d.get_value() for d in distance]

Modeling 44 / 46

Implied Constraints (Choco)

Model model = new Model();

IntVar[] marks = model.intVarArray("m", m, 0, n);

IntVar[] distance = model.intVarArray("d",m * (m - 1) / 2, 1, n);

% IntVar[][] dmap = new IntVar[m][m];

int k = 0;

for(int i=0; i<m-1; ++i) {

model.arithm(marks[i], "<", marks[i+1]).post();

for(int j=i+1; j<m; ++j) {

dmap[i][j] = distance[k];

model.arithm(distance[k], "<=", marks[m - 1], "-", ((m - 1 - j + i) * (m - j + i)) / 2).post();

model.arithm(distance[k], ">=", (j - i) * (j - i + 1) / 2).post();

model.scalar(new IntVar[]{marks[i], marks[j]}, new int[]{-1,1}, "=", distance[k++]).post();

}

model.arithm(marks[0], "=", 0).post();

model.arithm(distance[0], "<", distance[distance.length-1]).post();

}

% for(int i=0; i<m-2; ++i)

% for(int j=i+2; j<m; ++j)

% model.arithm(dmap[i][j], "=", dmap[i][j-1], "+", dmap[j-1][j]).post();

model.allDifferent(distance).post();

model.setObjective(Model.MINIMIZE, marks[m-1]);

Modeling 45 / 46

Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking

Modeling 46 / 46

Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking

Modeling 46 / 46

Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking

Modeling 46 / 46

Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking

Modeling 46 / 46

Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking

Modeling 46 / 46

Conclusions

Good modeling practices

What are the variables, what are the values?

I Constraints will follow

I Defines the shape of the search tree

Key principle: strengthen constraint propagation

I Global constraints
I Implied constraints
I Symmetry breaking

Modeling 46 / 46

Master class on hybrid optimisation Toulouse
June 4th and 5th

Pierre Bonami (Université d’Aix-Marseille) Mixed-Integer Linear and Nonlinear
Programming Methods

Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete
Optimization, Constraint programming, and Integer Programming

John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming /
Constraint Programming Methods

Paul Shaw (IBM Research) Combinations of local search and constraint
programming

Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT
solvers

Free registration, students’ accommodation covered!

Modeling 47 / 46

Master class on hybrid optimisation Toulouse
June 4th and 5th

Pierre Bonami (Université d’Aix-Marseille) Mixed-Integer Linear and Nonlinear
Programming Methods

Willem Jan van Hoeve (Carnegie Mellon University) Decision diagrams for Discrete
Optimization, Constraint programming, and Integer Programming

John Hooker (Carnegie Mellon University) Hybrid Mixed-Integer Programming /
Constraint Programming Methods

Paul Shaw (IBM Research) Combinations of local search and constraint
programming

Laurent Simon (Université de Bordeaux) Understanding, using and extending SAT
solvers

Free registration, students’ accommodation covered!

Modeling 47 / 46

	Language
	Variables
	Constraints
	Expression tree
	Global constraints
	Constraint solving

	Modeling

