
Winning World War II with constraint
programming

A practical on constraint modeling

May 15, 2018

Installation

You can do the practical using either Choco (Java) or Numberjack (Python). I recom-
mend to use Choco because you are less likely to run into bugs and other problems.

Choco (recommended)

Download Choco from there
https://github.com/chocoteam/choco-solver/releases/tag/4.0.6

Makefile method (I can help)

• copy choco-solver-4.0.6-with-dependencies.jar into practical/Choco

• use make to build and ./run Warmup to run Warmup.java

IDE method (you’re on your own)

• Install it following the instructions on Choco’s website
(http://www.choco-solver.org/) in your preferred IDE

• Then you add the files from the practical to a Choco project

Resources: Choco’s user guide and Javadoc.

Numberjack (nicer, but riskier)

Makefile method (I can help)

• run pip install Numberjack

(and pray)

Resources: Numberjack/userguide.pdf.

1



Warmup (Warmup.java)

Let’s start a with simple transposition code. A transposition code uses a static transpo-
sition table: a permutation of the alphabet. Here we pretend to be spies and we want to
use constraint programming to encrypt and decrypt messages.

Exercice 1 transposeEncodeChar: Write a model with two variables, one standing for a
text letter and another standing for the ciphered message by the given transposition
table.(search is already setup to find all feasible combinations)

Hint: you might want to use a global constraint very briefly mentioned in yester-
day’s lecture

Exercice 2 transposeEncodeText: Write a model with one variable per letter in the
ciphertext. The solution will correspond to the result of encrypting the plaintext
“IAMAREALSPYNOW” with the same transposition table.

Exercice 3 transposeDecodeText: Write a model with one variable per letter in the
plaintext. The solution will correspond to the message that was encrypted with the
same transposition table and yielding the ciphertext “MYXXRPQWGYXFRUYL-
RLMYOECYPE”

2



Breaking commercial Enigma (CommercialEnigmaBreaker.java)

We haven’t broken the transposition code, but this is relatively easy using statistical
methods because it conserves all the patterns of the language, which we leave for another
practical. We are going to break Enigma’s code, however!

The commercial Enigma machine is significantly harder to break. It is based on ro-
tors which are rotating transposition tables. An Enigma machine has a keyboard, three
rotors, a reflector and a display. When a key is pressed (‘A’ in the example in figure 1),
the characters traverses the three rotors once forward, then it is transposed to another
character by the reflector (a transposition table that is symmetric and irreflexive), then
it traverses the three same rotors backward to finally appear on the display.

Figure 1: Enigma machine, pressing the key ‘A’ (credit Eric Roberts)

However, the characteristic that makes Enigma powerful is that after each such en-
crytption of a character, the first (fast) rotor rotates (as the name suggests) by one posi-
tion, thus changing the transposition table. Moreover, when the fast rotor has completed
a whole revolution, the medium rotor turns once and when the middle rotor completes
a revolution, the slow rotor turns as well. As a result, pressing the same character twice
does not yield the same output character (see figure 2).

Observe that thanks to the reflector, pressing the ciphered charcater’s key when the
machine is in the same setting as during encryption yields the original plaintext character!
This makes the Enigma machine very convenient to use. The sender and the receiver
only need to share the rotor positions when the encryption began. The receiver therefore

3



Figure 2: Enigma machine, pressing the key ‘A’ again (credit Eric Roberts)

simply types the ciphertext to obtain the plaintext. We call the positions of the rotors
(in {0, . . . , 25}3) the encryption key, or simply the key.

Exercice 1 singleRotorEmulate: Write a constraint program which “emulates” a ma-
chine with a single rotor (and no reflector). The array of variables plaintext stands
for the message to encrypt, ciphertext for the encrypted message and the variable
key stands for the position of the rotor when encrypting the first character.

Exercice 2 singleRotorBreak: We want to decipher the encrypted message “LCKPY-
BKOUMPVHKZNBITLIKUXOVN” that was obtained by using a single rotor. We
have a model of the rotor (perm[0]) that was used because our navy found it when
boarding a U-pedal-boat, however we do not know what key was used to encrypt
the message.

To give us the edge, our intelligence agency worked day and night and arrived to the
following conclusion: the ennemy is devious, yet always very polite, so the message
must start with a greeting (“HI” or “HELLO”). This is what is called a crib: we
know that the letter ‘H’, when encoded in first position, corresponds to a ‘L’.

Write a constraint program which decipher a message (“LCKPYBKOUMPVHKZN-
BITLIKUXOVN”) encrypted with a single rotor (perm[0]), given a crib (“H”).

4



Exercice 3 multipleRotorsBreak: We have intercepted a new ciphered message (“YTHXGIP-
IBUZYCCQSLPELWDRAOZXOSGOHCZNOLRGYXFYZTWFMZIBDBUVOU”),
however, the ennemy has used not one but two rotors (a fast perm[0] and a medium
rotor perm[1]). Being grossly arrogant, there are good reasons to believe that the
ennemy sent a message starting with a demonstrative pronoum (“THE”, “THAT”,
“THOSE”, etc.), so the crib is “TH”. Write a constraint program to decipher it.

Exercice 4 commercialEnigmaEncode: It appears that the machine that our navy found
on the earlier U-pedal-boat, and which our expert analyst first classified as a “mini-
tel” (whatever that is) was in fact an Enigma machine. With the knowledge of its
mechanism (given by rotors and reflector), we will be able to break the ennemy
code! First we should be able to emulate it. Write a constraint program which,
given a message plaintext and an array of (3) rotor positions key, computes the
encrypted message in the array of variables ciphertext.

Exercice 5 commercialEnigmaBreak: Alright, now we can eventually break the ennemy
code! We managed to lure an ennemy homming pigeon by skilfully disguising
a Sussex cottage into a Bavarian castle. Here’s the message that was tied to
its ankle: “SLIAMQPKAYMDNZPPJUWWWTNFCJZEHRNQOEANJGVBMH-
HDZBXMACJRZYPDXJUSWTGOPCJQUJCZVAMEDUPAIMPCXP”. Our expert
psychoanalysts tell us that the ennemy is so self-centered1 that the message is likely
to start with “WE”. Write a constraint program to decipher it.

Breaking military Enigma2 (MilitaryEnigmaBreaker.java)

Unfortunately, the Enigma machine in its military version was upgraded by the addition
of a plug board (see figure 3). Before and after going through the rotors, the character
signal is transposed using the chosen configuration of the plug board, which is a symmetric
permutation. Only ten pairs of characters can be transposed, the remaining six characters
are transposed to themselves. With this device, the encryption key now becomes the
rotors’ positions plus the plugboard pairings. This increases the number of potential
keys from 17576 = 263 to 150, 738, 274, 937, 250...

Exercice 1 militaryEnigmaBreak: We will first try to generalise the model used to
break the commercial version by adding variables for the plug board. However,
since the problem is much harder we shall retrict the alphabet to 16 characters
(“ACDEGHILMNORSTWY”) and also restrict the plugboard so that it is only
capable of transposing two pairs of characters (the remaining 22 characters are
transposed to themselves). The message is [too long to state in the text] and the
crib is “ALRIGHTTHISMESSAGEWAS”. Write a constraint program to break it!

1the subsequent dispute about the root cause being mother or father-related hasn’t stopped yet, but
that’s beside the point

2or trying to...

5



Figure 3: Enigma machine’s plugboard (Wikimedia commons)

The goal here is to come up with the most efficient constraint program as possible.
One way is to add implied constraints. An observation that might be useful is that
the plugboard is static, it always transposes the same pairs of characters no matter
where they are in the message. Another observation is that because the reflector
is irreflective, Enigma never encrypts a character into itself.

Breaking military Enigma3 (Bombe.java)

Unless you are an exceptionally good constraint programmer, your general Enigma-
deciphering program will not scale to full alphabet and plugboard.

Thankfully, a certain Alan Turing came up with a device, the Bombe that can bring
us closer to breaking the code. This device goes through every of the 263 starting rotor
positions in turn and emulates the Enigma machine (skipping the plugboard) for the
given key.

Let Mi(α) be the Enigma-encrypted character when reading α in i-th position the
plaintext. Similarly, let Ri(α) be the image of α read i-th but skipping the plug board
(forward and backward). Finally let P (α) be the image of α by the plugboard.

Since we have a crib, we do know some values of Mi, for instance suppose that at
position i the plaintext is ‘α’ and the ciphertext is ‘β’ (i.e., β =Mi(α)).

3for real this time

6



α ? ? β
P Ri P

Mi

Moreover, let’s pretend that the plugboard transposes α to γ. Since the bombe can
emulate Enigma without plugboard, we can compute Ri(γ), let it be δ.

α γ δ β
P Ri P

Mi

We now know that if the plugboard transposes α to γ (or vice versa), then it must
transpose δ to β (and vice versa): P (α) = γ =⇒ P (δ) = β. We can continue deducing
transpositions and perhaps reach a contradiction (for instance it is a contradiction right
away if δ = α 6= β 6= γ). We check every character of the alphabet in the same way.

When every character has at least one possible transposition, then the Bombe stops
and the operator must search for every feasible transposition tables in order to find one
that decipher the message.

Exercice 1 BombeEnigmaBreak: Alan Turing (who, though a bit geeky, is really a brilliant
chap) observed that because the reflector is an irreflexive transposition, the Enigma
machine never encrypts a character into itself. Our analysts think that the sentence
“THEFIRSTONEWHOCAN” is somewhere in the message. Using Alan’s trick, we
can rule out a number of positions. For instance only the positions 1 and 4 are
possible among the cases below:
CAUBOJ JOUTCT V H X QF J ZUBZQCN

1:THEF I RSTONEWH O C AN
2: THEF I RSTONEWH O CAN
3: THEF I RSTON EWH OCAN
4: THEF I RSTO N EWHOCAN
5: THEF I RS T O N EWHOCAN
So we are going to try first with the crib being at the start of the message.

Adapt your constraint program for the military version of Enigma so that we can
use it to find plugboard configurations when the Bombe stops. Instead of being an
array of variables, now the key is an array of constant (input data).

7


