
Numberjack User Guide

May 27, 2013

1 Variables
Constructor for the class Variable:

Constructor Object
Variable() Binary variable
Variable(N) Variable in the domain of {0, N-1}

Variable(’x’) Binary variable called ’x’
Variable(N, ’x’) Variable in the domain of {0, N-1} called ’x’
Variable(l,u) Variable in the domain of {l, u}

Variable(l,u, ’x’) Variable in the domain of {l, u} called ’x’
Variable(list) Variable with domain specified as a list

Variable(list, ’x’) Variable with domain specified as a list called ’x’

The class VarArray represents a list of Variables.

Constructor Object
VarArray(l) creates an array from a list l
VarArray(n) creates an array of n Boolean variables

VarArray(n, ’x’) creates an array of n Boolean variables with names ’x0..xn-1’
VarArray(n, m, ’x’) creates an array of n variables with domains [0..m-1] and names ’x0..xn-1’

VarArray(n, m) creates an array of n variables with domains [0..m-1]
VarArray(n, d, ’x’) creates an array of n variables with domains d and names ’x0..xn-1’

VarArray(n, d) creates an array of n variables with domains d
VarArray(n, l, u, ’x’) creates an array of n variables with domains [l..u] and names ’x0..xn-1’

VarArray(n, l, u) creates an array of n variables with domains [l..u]

The class Matrix represents a 2-dimensional array of Variables.

Constructor Object
Matrix(l) creates a Matrix from a list l

Matrix(n, m) creates a n x m Matrix of Boolean variables
Matrix(n, m, ’x’) creates a n x m Matrix of Boolean variables with names ’x0.0..xn-1.m-1’
Matrix(n, m, u) creates a n x m Matrix of variables with domains [0..u-1]

Matrix(n, m, u, ’x’) creates a n x m Matrix of variables with domains [0..u-1] and names ’x0.0..xn-1.m-1’
Matrix(n, m, l, u) creates a n x m Matrix of variables with domains [l..u]

Matrix(n, m, l, u, ’x’) creates a n x m Matrix of variables with domains [l..u] and names ’x0.0..xn-1.m-1’

1

Operators
These use the infix notation (x ⊕ y where ⊕ is an operator). They return an Expression object that
can be constrained. Operators in the first table must be used as expressions in another constraint.

Symbol Arguments Value
+ Expression/Integer x, Expression/Integer y an Expression constrained to be equal to x+ y
− Expression/Integer x, Expression/Integer y an Expression constrained to be equal to x− y
∗ Expression/Integer x, Expression/Integer y an Expression constrained to be equal to x× y
/ Expression/Integer x, Expression/Integer y an Expression constrained to be equal to x/y
% Expression/Integer x, Expression/Integer y an Expression constrained to be equal to x mod y

Operators of the second table may be posted as constraints. In this case, if x is the returned Expression,
the posted constraint will have the semantic x 6= 0 (i.e., x is True).

Symbol Arguments Value
== Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x = y
! = Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x 6= y
<= Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x ≤ y
< Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x < y
>= Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x ≥ y
> Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x > y
| Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x 6= 0 or y 6= 0
& Expression/Integer x, Expression/Integer y a (Boolean) Expression constrained to be 1 iff x 6= 0 and y 6= 0

2

Functions
These are used as function (foo(args), where foo is the function and args the argunents). They return an
Expression object that must be constrained.

Symbol Arguments Value
Abs an Expression x an Expression constrained to be equal to |x|
Neg an Expression x an Expression constrained to be equal to −x
Sum a list of Expressions [x1, . . . , xn] an Expression constrained to be equal to

∑n
i=1 aixi

a list of Integers [a1, . . . , an] (default [1, . . . , 1])
Min a list of Expressions [x1, . . . , xn] an Expression constrained to be equal to min1≤i≤n xi

Max a list of Expressions [x1, . . . , xn] an Expression constrained to be equal to max1≤i≤n xi

Element* a list of Expressions [x1, . . . , xn] an Expression constrained to be equal to xy

and an Expression y
(*) Can be used with the square brackets operator is [x1, . . . , xn] is a VarArray X as follows: X[y]

Constraints
These are used as function (foo(args), where foo is the function and args the argunents), they are not
expressions and cannot be constrained.

Symbol Arguments Value
AllDiff a List of Expressions [x1, . . . , xn] Constrains the variables [x1, . . . , xn] to take pairwise

distinct values
Gcc a List of Expressions [x1, . . . , xn] and a Dictionary Constrains each value vj in

⋃
1≤i≤n D(xi) to appear

mapping each value vj in
⋃

1≤i≤n D(xi) to a pair (lj , uj) between lj and uj times in the sequence [x1, . . . , xn]

Objectives
These are used as function (foo(args), where foo is the function and args the argunents), they are not
expressions and cannot be constrained. Only one objective can be added to the model.

Symbol Arguments Value
Maximise an Expression x Indicates that the value of x should be maximised
Minimise an Expression x Indicates that the value of x should be minimised

3

Variable Heuristics
Set by the method setHeuristic(var-order, val-order, randomization) of Solver.
The possible arguments for “var-order” are:

Symbol Effect
’Random’ Branch on variables according to the input order
’Lex’ Branch on variables according to the input order

’AntiLex’ Branch on variables according to the inverse of input order
’MaxDegree’ Branch on the variable of highest dynamic degree first
’MinDomain’ Branch on the variable with smallest domain first

’MinDomainMinVal’ Branch on the variable with smallest domain first, ties broken by minium min value
’MinDomainMaxDegree’ Branch on the variable with smallest domain first, ties broken by dynamic degree
’DomainOverDegree’ Branch on the variable with smallest ratio (domain size / degree)
’DomainOverWDegree’ Branch on the variable with smallest ratio (domain size / weighted degree)

’Ngihbour’ Branch on the variable average (domain size / degree) over neighbouring variables
’Impact’ Branch on the variable of highest impact

’ImpactOverDegree’ Branch on the variable with smallest ratio (1 / (impact * degree))
’ImpactOverDegree’ Branch on the variable with smallest ratio (1 / (impact * weighted degree))

The possible arguments for “val-order” are:

Symbol Effect
’Lex’ Select the minimum value in the domain

’AntiLex’ Select the maximum value in the domain
’Random’ Select a value randomly with uniform probability

’RandomMinMax’ Select either the minimum of maximum value randomly with uniform probability
’DomainSplit’ Reduce the domain splitting around the average of the bounds
’RandomSplit’ Reduce the domain splitting around a random value

’Impact’ Select the value with minimum impact

The randomization arguments indicates how many variables should be selected. The final choice is
made randomly between them

Solving Methods
The standard way of calling the solver is the method solve(X) where X is a list of variables (or a
VarArray or a Matrix). If no value is given for X, all variables are branched on. It return True is a
solution was found and False otherwise.

The method solveAndRestart(X) works similarly as solve(X), except that the search will
be restarted after a number of failures.

The methods startNewSearch(X) and getNextSolution() allow to find sevral solutions.
startNewSearch(X) must be called once to initialise the procedure, then getNextSolution()
can be called, finding a new solution at each call.

4

