INSPIRING INNOVATION | INNOVANTE PAR TRADITION

www.emse.fr

Spring School - UTT

Column generation and branch-and-price for vehicle routing problems Introduction

Dominique Feillet – Mines Saint-Etienne and LIMOS

Outline: basics of column generation

- 1. Introduction
- 2. Principle
- 3. Implementation
- 4. Pricing problem
- 5. Branch-and-price
- 6. Conclusion
- 7. Solution of the pricing problem

10033333333333

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Basics of column generation

INTRODUCTION

Dominique Feillet Spring school - UTT

Vehicle Routing Problem with Time Windows

- Consider a directed graph G = (V,A) with $V = \{v_0, ..., v_n\}$,
 - v_0 is a depot where a fleet of **U** vehicles of capacity **Q** are based
 - v_1 to v_n are customers with demand d_i , time window $[a_i, b_i]$ and service time st_i for all $v_i \in \{v_1, ..., v_n\}$
- Travel times (costs) c_{ij} are set on arcs $(v_i, v_j) \in A$
 - Triangle inequality is assumed
- The VRPTW aims at finding a set of U routes of minimum cost that enables satisfying the demand of customers and respects vehicle capacities and customer time windows

Compact formulation

Dominique Feillet

Spring school - UTT

14/05/2018

TAXABLE IN CONTRACTOR OF CONTA

Extended formulation

- Additional notation
 - $\Omega = \{r_1, \dots, r_{|\Omega|}\}$: set of feasible vehicle routes
 - c_k: cost of route r_k
 - $a_{ik} = 1$ if route r_k visits customer v_i , 0 otherwise

$$\begin{split} & \text{minimize} \sum_{r_k \in \Omega} c_k \theta_k \\ \text{subject to} \\ & \sum_{r_k \in \Omega} a_{ik} \theta_k \geq 1 \qquad (v_i \in V \setminus \{v_0\}), \\ & \sum_{r_k \in \Omega} \theta_k \leq U, \\ & \theta_k \in \mathbb{N} \qquad (r_k \in \Omega). \end{split}$$

Dominique Feillet

Spring school - UTT

Extended formulation: illustration

Optimal solution: $\theta = \{0, 0, 0, 0, 0, 0, 1\}$, value = 4

Dominique Feillet Spring school - UTT

14/05/2018

Motivation for using the extended formulation

Motivation for using the extended formulation

minimize \sum	$c_{ij}x^u_{ij}$	(1 1)	
$1 \leq u \leq U(v_i, v_j)$ subject to	$(j) \in A$	V ₀	
$\sum \qquad \sum \qquad x_{ij}^u \ge 1$	$(v_i \in V \setminus \{v_0\}),$		(v_2)
$\sum_{\{v_j \in V (v_i, v_j) \in A\}}^{1 \le u \le U} x_{ij}^u - \sum_{\{v_j \in V (v_j, v_i) \in A\}} x_{ji}^u = 0$	$(v_i \in V, 1 \le u \le i$	$x_{12}^{1} = x_{21}^{1} = 0.5$ $s_{11}^{1} = 1, s_{21}^{1} = 2$	$x_{12}^2 = x_{21}^2 = 0.5$ $s_1^2 = 1, s_2^2 = 2$
$\sum_{\{v_i \in V (v_0, v_i) \in A\}} x_{0i}^u \le 1$	$(1 \le u \le U),$	(1.4)	
$\sum_{(v_i, v_j) \in A} d_i x_{ij}^u \le Q$	$(1\leq u\leq U),$	(1.5)	
$s_i^u + st_i + c_{ij} - s_j^u + Mx_{ij}^u \le M$	$((v_i,v_j)\in A, v_j\neq$	$v_0, 1 \le u \le U), (1.6)$	
$s_i^u + st_i + c_{i0} - b_0 + Mx_{i0}^u \le M$	$((v_i,v_0)\in A, 1\leq$	$u \le U), \tag{1.7}$	
$a_i \le s_i^u \le b_i$	$(v_i \in V, 1 \le u \le l$	U), (1.8)	
$x_{ij}^u \in \{0,1\}$	$((v_i, v_j) \in A, 1 \le$	$u \le U), \tag{1.9}$	

Dominique Feillet Spring school - UTT

Motivation for using the extended formulation

Instance

Extended formulation: linear relaxation

 $\begin{array}{l} \text{Min } 2\theta_1 + 2\theta_2 + 2.1\theta_3 \\ \text{subject to} \\ \left\{ \begin{array}{c} \theta_1 + & \theta_3 \geq 1 \\ \theta_2 + & \theta_3 \geq 1 \\ \theta_1, \dots, \theta_3 \geq 0 \end{array} \right. \end{array}$

Optimal solution: $\theta = \{0,0,1\}$, value = 2.1

A few words about Dantzig-Wolfe decomposition...

Dominique Feillet Spring school - UTT

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Basics of column generation

PRINCIPLE

Dominique Feillet Spring school - UTT

Master Problem and Restricted Master Problems

- Master Problem (MP): linear relaxation of the extended formulation
- Restricted Master Problem (MP(Ω_t)): restrict the variable set to a subset Ω_t of Ω

$$(MP(\Omega_{1})) \qquad \text{minimize} \sum_{r_{k} \in \Omega_{1}} c_{k} \theta_{k}$$

subject to
$$\sum_{r_{k} \in \Omega_{1}} a_{ik} \theta_{k} \geq 1 \qquad (v_{i} \in V \setminus \{v_{0}\}),$$

$$\sum_{r_{k} \in \Omega_{1}} \theta_{k} \leq U,$$

$$\theta_{k} \geq 0 \qquad (r_{k} \in \Omega_{1}).$$

General scheme

- The aim of column generation is to solve MP
- The principle is to find a subset Ω_t such that solving $MP(\Omega_t)$ also solves MP

More detailed scheme

Computation of variable reduced costs

Reduced cost is computed from optimal dual values

	$(MP(\Omega_1))$	minimize $\sum_{r_{t}}$	$\sum_{\in \Omega_1} c_k \theta_k$	
subject to		· ĸ		Dual variables
		$\sum_{r_k \in \Omega_1} a_{ik} \theta_k \ge 1$	$(v_i \in V \setminus \{v_0\}),$	$\lambda_i \ge 0$
		$\sum_{r_k \in \Omega_1} \theta_k \le U,$		λ ₀ ≤ 0
		$\theta_k \ge 0$	$(r_k \in \Omega_1).$	

 $\mathbf{\Gamma}$ $c_k -$ Reduced cost of variable $\theta_k \in \Omega$:

$$\sum_{v_i \in V \setminus \{v_0\}} a_i^k \lambda_i - \lambda_0$$

Dominique Feillet Spring school - UTT 14/05/2018

١

Remarks

- In what follows terms variables / columns / routes will be used indifferently
- A column is never generated more than once
 - Every column in Ω_t has a nonnegative reduced cost when $\text{MP}(\Omega_t)$ is solved
- The algorithm is finite
 - The number of columns in Ω is finite

Illustration on the previous example

Initialization and iteration 1

$$\begin{split} \Omega_1 &= \{r_1, r_2, r_3\} \text{ with } r_1 = (v_0, v_1, v_0), \ r_2 = (v_0, v_2, v_0), \ r_3 = (v_0, v_3, v_0) \\ \text{Min } 2\theta_1 + 2, 8\theta_2 + 2\theta_3 \\ \text{subject to} \\ \begin{cases} \theta_1 &\geq 1 \\ \theta_2 &\geq 1 \\ \theta_3 &\geq 1 \\ \theta_1, \dots, \theta_3 &\geq 0 \end{cases} \\ \end{split} \\ \end{split} \\ \begin{aligned} & \lambda_1 &\leq 2 \\ \lambda_2 &\leq 2.8 \\ \lambda_3 &\leq 2 \\ \lambda_1, \dots, \lambda_3 &\geq 0 \end{aligned}$$

Optimal solution (cost = 6.8) θ =(1; 1; 1) λ =(2; 2.8; 2)

Route $r_4 = (v_0, v_1, v_2, v_0)$ has a reduced cost -1.4 (reduced cost = 3.4 - 2 - 2.8 = -1.4)

Dominique Feillet

Spring school - UTT

14/05/2018

18

Illustration on the previous example

• Iteration 2

 $\Omega_2 = \{r_1, r_2, r_3, r_4\}$ with $r_4 = (v_0, v_1, v_2, v_0)$

 $\begin{array}{l} \text{Min } 2\theta_1 + 2,8\theta_2 + 2\theta_3 + \textbf{3.4}\theta_4 \\ \text{subject to} \\ \left\{ \begin{array}{c} \theta_1 & \textbf{+} \, \theta_4 \, \geq 1 \\ \theta_2 & \textbf{+} \, \theta_4 \, \geq 1 \\ \theta_3 & 2 \end{array} \right. \\ \left. \theta_1, \dots, \theta_3, \theta_4 \geq 0 \end{array} \right. \end{array}$

Optimal solution (cost = 5.4) θ =(0; 0; 1; 1) λ =(2; 1.4; 2) $\begin{array}{l} \text{Max } \lambda_1 + \lambda_2 + \lambda_3 \\ \text{subject to} \\ \left\{ \begin{array}{cc} \lambda_1 & \leq 2 \\ \lambda_2 & \leq 2.8 \\ \lambda_3 & \leq 2 \\ \lambda_1 + \lambda_2 & \leq 3.4 \\ \lambda_1, \dots, \lambda_3 \geq 0 \end{array} \right. \end{array}$

Route $r_7 = (v_0, v_1, v_2, v_3, v_0)$ has a reduced cost -1.4 (reduced cost = 4 - 2 - 1.4 - 2 = -1.4)

Dominique Feillet

Spring school - UTT

Illustration on the previous example

Iteration 3

 $\Omega_3 = \{r_1, r_2, r_3, r_4, r_7\}$ with $r_7 = (v_0, v_1, v_2, v_3, v_0)$ Min $2\theta_1 + 2,8\theta_2 + 2\theta_3 + 3,4\theta_4 + 4\theta_7$ Max $\lambda_1 + \lambda_2 + \lambda_3$ subject to subject to $\begin{cases} \theta_1 & +\theta_4 + \theta_7 \ge 1 \\ \theta_2 & +\theta_4 + \theta_7 \ge 1 \\ \theta_3 & +\theta_7 \ge 1 \\ \theta_1, \dots, \theta_4, \theta_7 \ge 0 \end{cases}$

Optimal solution (cost = 4) $\theta = (0; 0; 0; 0; 1)$ **λ=(1;2;1)**

 $\left\{\begin{array}{ccc}\lambda_{1}&\leq 2\\ \lambda_{2}&\leq 2,8\\ \lambda_{3}&\leq 2\\ \lambda_{1}+\lambda_{2}&\leq 3,4\\ \lambda_{1}+\lambda_{2}+\lambda_{3}\leq 4\\ \lambda_{1},\ldots,\lambda_{3}\geq 0\end{array}\right.$

No route with a negative reduced cost exists: solution θ is also optimal for MP

Dominique Feillet

Spring school - UTT

Remarks

• Equivalently, a variable with negative reduced cost is associated with a violated constraint in the dual program of $MP(\Omega_t)$

 Adding a column amounts to adding a violated constraint in the restricted dual program

Dominique Feillet Spring school - UTT

Remarks

At each iteration, the solution of MP(Ω_t) provides a feasible primal solution and non-necessarily feasible dual solution (with the same cost). If the dual solution is feasible, they are both optimal (weak duality theorem)

Remarks

• Dual point of view

ALT11111111

23

Dual polyhedron for MP

Dual polyhedron for $MP(\Omega_t)$

Optimal dual solution at iteration t

Dual polyhedron for $MP(\Omega_{t+1})$

Equivalent to Kelley's algorithm for convex nonlinear programming

Remark

- Having generated the columns of the optimal solution is not necessarily sufficient for the algorithm to stop
- Illustration (initial set of column)

$$\begin{split} \Omega_1 &= \{r_7\} \text{ with } r_7 &= (v_0, v_1, v_2, v_3, v_0) \\ \text{Min } 4\theta_7 \\ \text{subject to} \\ & \begin{cases} \theta_7 \geq 1 \\ \theta_7 \geq 1 \\ \theta_7 \geq 1 \\ \theta_7 \geq 0 \end{cases} \end{split}$$

 $\begin{array}{l} \text{Max } \lambda_1 + \lambda_2 + \lambda_3 \\ \text{subject to} \\ \left\{ \begin{array}{l} \lambda_1 + \lambda_2 + \lambda_3 \leq 4 \\ \lambda_1, \dots, \lambda_3 \geq 0 \end{array} \right. \end{array}$

Remark

• Illustration (first iteration)

 $\Omega_1 = \{r_7\}$ with $r_7 = (v_0, v_1, v_2, v_3, v_0)$

 $\begin{array}{l} \text{Min } 4\theta_7 \\ \text{subject to} \\ \left\{ \begin{array}{l} \theta_7 \geq 1 \\ \theta_7 \geq 1 \\ \theta_7 \geq 1 \\ \theta_7 \geq 0 \end{array} \right. \end{array}$

 $\begin{array}{l} \text{Max } \lambda_1 + \lambda_2 + \lambda_3 \\ \text{subject to} \\ \left\{ \begin{array}{l} \lambda_1 + \lambda_2 + \lambda_3 \leq 4 \\ \lambda_1, \dots, \lambda_3 \geq 0 \end{array} \right. \end{array}$

Optimal solution (cost = 4) θ =(1) λ =(4;0;0)

Route $r_1 = (v_0, v_1, v_0)$ has a reduced cost -2

10111111111111

25

Remark

• Illustration (second iteration...)

 $\Omega_2 = \{r_7, r_1\} \text{ with } r_1 = (v_0, v_1, v_0)$

 $\begin{array}{l} \text{Min } 4\theta_7 \\ \text{subject to} \\ \left\{ \begin{array}{l} \theta_7 + \theta_1 &\geq 1 \\ \theta_7 &\geq 1 \\ \theta_7 &\geq 1 \\ \theta_7, \theta_1 \geq 0 \end{array} \right. \end{array}$

 $\begin{array}{l} \text{Max } \lambda_1 + \lambda_2 + \lambda_3 \\ \text{subject to} \\ \left\{ \begin{array}{l} \lambda_1 + \lambda_2 + \lambda_3 \leq 4 \\ \lambda_1 & \leq 2 \\ \lambda_1, \dots, \lambda_3 \geq 0 \end{array} \right. \end{array}$

Optimal solution (cost = 4) θ =(1;0) λ =(0;4;0)

Route (v_0, v_2, v_0) has a negative reduced cost -1.2

Dominique Feillet Spring school - UTT

11111111111111

26

27

Basics of column generation

IMPLEMENTATION

Dominique Feillet Spring school - UTT

Initial set of columns: efficiency

- A good initial set of columns is a set of columns that help limiting oscillations of dual variables
 - However, the initial set of columns doesn't necessarily have a strong impact on the efficiency of the method
 - Actually, in first iterations, "good" columns can usually be found quickly
- Example of initial sets
 - Columns obtained from a heuristic solution
 - { (v_0, v_1, v_0) , ... , (v_0, v_n, v_0) }
- Preventing from dual oscillations is also the subject of stabilization techniques (see later)

Initial set of columns: feasibility

- A feasible linear program is needed to start the algorithm
- If it is difficult to obtain a set of columns that ensures feasibility, artificial variables can be added
- Artificial variables can be viewed as subcontracted services
- Examples:
 - a high cost route that serves all customers
 - High cost routes that visit each a single customer and that do not appear in the fleet size constraint

Other remarks

- A usual practice is to generate several columns at each iteration
 - Save iterations
- If too many columns have been generated, columns that never enter the basis can be removed (with the sole risk that they may be generated again later)
 - Save solution time for $MP(\Omega_t)$
 - Usually useless for vehicle routing problems
- Be careful with numerical imprecision
 - Risk of being trapped in the repeated generation of the same column with reduced cost that looks like -0.00000001

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Basics of column generation

PRICING PROBLEM

Dominique Feillet Spring school - UTT

Recall of the column generation scheme

Reformulation of the pricing problem

• Find $r_k \in \Omega$ such that

$$c_k - \sum_{v_i \in V \setminus \{v_0\}} a_i^k \lambda_i - \lambda_0 < 0.$$

• Equivalently, find $r_k \in \Omega$ such that

$$\sum_{(v_i,v_j)\in A} b_{ij}^k (c_{ij} - \lambda_i) < 0.$$

$$\mathbf{v}_0 \cdots \mathbf{v}_i \frac{\mathbf{c}_{ij} - \lambda_i}{\mathbf{v}_j} \cdots \mathbf{v}_0$$

with $b_{ij}^{k} = 1$ when arc (v_i, v_j) belongs to route r_k

Reformulation of the pricing problem

• Can be expressed as the following combinatorial optimization problem:

Find the shortest path in the graph G, with arc costs $c_{ij} - \lambda_i$, from v_0 to v_0 , subject to capacity and time windows constraints, such that no vertex is traversed more than once

 This problem is known as the Elementary Shortest Path Problem with Resource Constraint (ESPPRC)

Remarks

- The ESPPRC is NP-hard in the strong sense
- It is usually solved with Dynamic Programming
 - Other possibilities: branch-and-cut, Constraint Programming...
- The optimal solution is not needed; one can stops as soon as one (or a "sufficient" number) of paths with negative costs are found
- One can first search for good solutions with a heuristic (e.g., tabu search)
- One can exploit the fact that paths from the current basis have a cost equal to zero

Dominique Feillet Spring school - UTT

Complete column generation scheme

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

SOLUTION OF THE ESPPRC

Dominique Feillet Spring school - UTT

Dynamic programming algorithm

No capacity constraints $\lambda = (2; 2.8; 2)$ Labels: [cost,time,(v₁,v₂,v₃)]

TARABETTER PARTY IN

Dynamic programming algorithm

TRATITION OF

Dynamic programming algorithm

NIG11111111111

Dynamic programming algorithm

PROPERTY 1010101010

Dynamic programming algorithm

CONTRACTOR NO.

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Basics of column generation

BRANCH-AND-PRICE

Dominique Feillet Spring school - UTT

Why branch-and-price?

- Recall that column generation is just a method to solve a linear program
- It is embedded in branch-and-bound to solve the integer program
 - At each node of the search tree (including the root node), column generation is used to compute the LP relaxation
- The name branch-and-price just emphasizes the fact that column generation is applied at each node
- The main issue with branch-and-price is that one has to be careful about the way separation is applied

• Standard separation rule in branch-and-bound

TAXABLE PARTY AND ADDRESS OF ADDR

• Standard separation rule in branch-and-bound

Master problem: remove θ_k (or fix $\theta_k = 0$) **Pricing problem**: forbid path r_k (ESPPRC with forbidden paths)

Dominique Feillet Spring school - UTT

• Standard separation rule in branch-and-bound

Master problem: fix $\theta_k = 1$, remove (or fix to 0) all other columns where a customer from route r_k is visited **Pricing problem**: remove customers from route r_k from the graph

Dominique Feillet Spring school - UTT

• Standard separation rule in branch-and-bound

• Standard separation rule in branch-and-bound

+ Inefficient : strong imbalance of the search tree

Dominique Feillet Spring school - UTT

50

Separation rule

Usual separation rule

• It can be shown that in any fractional solution an arc with a fractional flow exists

Dominique Feillet Spring school - UTT

5

Separation rule

Usual separation rule

Master problem: remove (or fix to 0) all columns that use arc (v_i, v_j) **Pricing problem**: remove arc (v_i, v_j) from the graph

Dominique Feillet Spring school - UTT

Separation rule

• Usual separation rule

Master problem: remove (or fix to 0) all columns that use an arc (v_i, v_k) with $k \neq j$ or an arc (v_k, v_j) with $k \neq i$ **Pricing problem**: remove arcs (v_i, v_k) with $k \neq j$ and arcs (v_k, v_j) with $k \neq i$ from the graph

Dominique Feillet

Spring school - UTT

14/05/2018

1011111111111111

53

Separation rule

Usual separation rule

Easy + efficient

Dominique Feillet Spring school - UTT

INNOVANTE PAR TRADITION

Remarks

- It is generally admitted that in branch-and-price one should branch on the variables of the compact formulation
- It is possible to add constraints in the Master Problem when branching
 - The new dual variables then have to be considered when computing the reduced costs in the pricing problem
 - (dumb) Example

Impose arc (v_i, v_i)

Set cost of arc (v_i, v_j) to $c_{ij} - \lambda_i - \lambda_{ij}$ in the pricing problem

Remarks

- One can start by branching on the number of vehicles (if it is fractional)
 - Usually, the impact on the lower bound is very strong
 - The risk is to impose a maximal value that is too small (unfeasible solution) and that the algorithm spends a long time to close the node

56

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Basics of column generation

CONCLUSION

Dominique Feillet Spring school - UTT

Summary

- The extended formulation gives a far better lower bound than the compact formulation
- It is theoretically obtained from the compact formulation through Dantzig-Wolfe decomposition
- Column generation is needed to compute its linear relaxation
- It implies solving repeatedly NP-hard pricing problems (ESPPRC)

Other comments

- Branch-and-price is very generic
 - Application to different Vehicle Routing Problems only imply different resource constraints in the pricing problem
- Most of the computing time is spent when solving the pricing problem
 - Way of improvement 1: accelerate solution time of the pricing problem,
 - Way of improvement 2: reduce the number of iterations
 - Number of iterations per node: generation of good sets of columns at each iteration, stabilization techniques
 - Number of nodes: add valid inequalities (branch-price-and-cut)

59

Accelerate solution time for the pricing problem

- Accept non-elementary routes
 - The pricing problem becomes weakly NP-hard
 - The quality of the LP bound may decrease a lot...
- Accept some non-elementary routes
 - Accept routes without 2-cycles, 3-cycles...
 - Ng-routes
 - Ng-set(i): subset of customers that vertex i is able to "remember"
 - Memory(L): memory of label L
 - A label cannot be extended to a vertex in its memory
 - Dynamic relaxation

60

Improve the relaxation with valid inequalities

- Subset-row inequalities
 - Use a set-partitioning formulation
 - Find r₁, r₂, r₃ such that
 - r₁ visits i₁ and i₂
 - r₂ visits i₁ and i₃
 - r₃ visits i₂ and i₃
 - $\theta_1 + \theta_2 + \theta_3 \ge 1$
 - Add valid inequality $\theta_1 + \theta_2 + \theta_3 \le 1$
 - But the new dual variable complicates the pricing problem...

Dominique Feillet Spring school - UTT

Other comments

- Typical statistics for column generation applied to the VRPTW:
 - solve instances with less than 100 customers (up to to 200 for advanced implementations)
 - a few nodes in the search tree
 - several thousand columns generated
 - several hundred iterations

Some references

R. Baldacci, P. Toth, and D. Vigo. Recent advances in vehicle routing exact algorithms. 4OR, 5(4):269–298, 2007.

C. Barnhart, C.A. Hane, and P.H. Vance. Using Branch-and-Price-and-Cut to solve origin-destination integer multicommodity flow problems. *Operations Research*, 48(2):318–326, 2000.

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. *Column generation*. GERAD 25th Anniversary Series. Springer, 2005.

G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and generalized k-path inequalities for the vehicle routing problem with time windows. *Transportation Science*, 42(3):387–404, 2008.

M. Desrochers, J. Desrosiers, and M.M. Solomon. A new optimization algorithm for the Vehicle Routing Problem with Time Windows. *Operations Research*, 40(2):342–354, 1992.

D. Feillet. A tutorial on column generation and branch-and-price for vehicle routing problems. 4, 8(4):407–424, 2010.

M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research, 53(6):1007–1023, 2005.

Dominique Feillet Spring school - UTT