Spring School - UTT

Column generation and branch-and-price for vehicle routing problems Introduction

Dominique Feillet - Mines Saint-Etienne and LIMOS

Outline: basics of column generation

1. Introduction
2. Principle
3. Implementation
4. Pricing problem
5. Branch-and-price
6. Conclusion
7. Solution of the pricing problem

Basics of column generation INTRODUCTION

Vehicle Routing Problem with Time Windows

- Consider a directed graph $\mathbf{G}=(\mathbf{V}, \mathbf{A})$ with $\mathbf{V}=\left\{\mathbf{v}_{0}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$,
- v_{0} is a depot where a fleet of \mathbf{U} vehicles of capacity \mathbf{Q} are based
- v_{1} to v_{n} are customers with demand $\mathbf{d}_{\mathbf{i}}$, time window $\left[\mathrm{a}_{\mathrm{i}}, \mathbf{b}_{\mathbf{i}}\right.$] and service time $\boldsymbol{s t}_{\mathrm{i}}$ for all $\mathrm{v}_{\mathrm{i}} \in\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Travel times (costs) \mathbf{c}_{ij} are set on $\operatorname{arcs}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{A}$
- Triangle inequality is assumed
- The VRPTW aims at finding a set of U routes of minimum cost that enables satisfying the demand of customers and respects vehicle capacities and customer time windows

Compact formulation

$$
\begin{equation*}
\operatorname{minimize} \sum_{1 \leq u \leq U} \sum_{\left(v_{i}, v_{j}\right) \in A} c_{i j} x_{i j}^{u} \tag{1.1}
\end{equation*}
$$

subject to

$$
\begin{array}{rll}
\sum_{1 \leq u \leq U} \sum_{\left\{v_{j} \in V \mid\left(v_{i}, v_{j}\right) \in A\right\}} x_{i j}^{u} \geq 1 & \left(v_{i} \in V \backslash\left\{v_{0}\right\}\right), \\
\sum_{\left\{v_{j} \in V \mid\left(v_{i}, v_{j}\right) \in A\right\}} x_{i j}^{u}-\sum_{\left\{v_{j} \in V \mid\left(v_{j}, v_{i}\right) \in A\right\}} x_{j i}^{u}=0 & \left(v_{i} \in V, 1 \leq u \leq U\right), \\
\sum_{\left\{v_{i} \in V \mid\left(v_{0}, v_{i}\right) \in A\right\}} x_{0 i}^{u} \leq 1 & (1 \leq u \leq U), \\
\sum_{\left(v_{i}, v_{j}\right) \in A} d_{i} x_{i j}^{u} \leq Q & (1 \leq u \leq U), \\
s_{i}^{u}+s t_{i}+c_{i j}-s_{j}^{u}+M x_{i j}^{u} \leq M & \left(\left(v_{i}, v_{j}\right) \in A, v_{j} \neq v_{0}, 1 \leq u \leq U\right), \\
s_{i}^{u}+s t_{i}+c_{i 0}-b_{0}+M x_{i 0}^{u} \leq M & \left(\left(v_{i}, v_{0}\right) \in A, 1 \leq u \leq U\right), \\
a_{i} \leq s_{i}^{u} \leq b_{i} & \left(v_{i} \in V, 1 \leq u \leq U\right), \\
x_{i j}^{u} \in\{0,1\} & \left(\left(v_{i}, v_{j}\right) \in A, 1 \leq u \leq U\right), \tag{1.9}\\
\hline
\end{array}
$$

INSPIRING inNovation | INNOVANTE PAR tradition

Extended formulation

- Additional notation
- $\Omega=\left\{r_{1}, \ldots, r_{|\Omega|}\right\}$: set of feasible vehicle routes
- c_{k} : cost of route r_{k}
- $a_{i k}=1$ if route r_{k} visits customer $v_{i}, 0$ otherwise

$$
\begin{aligned}
\sum_{r_{k} \in \Omega} a_{i k} \theta_{k} & \geq 1 \quad\left(v_{i} \in V \backslash\left\{v_{0}\right\}\right), \\
\sum_{r_{k} \in \Omega} \theta_{k} & \leq U \\
\theta_{k} & \in \mathbb{N} \quad\left(r_{k} \in \Omega\right) .
\end{aligned}
$$

Extended formulation: illustration

Instance

$$
\begin{aligned}
& d_{i}=1, s t_{i}=0 \\
& Q=+\infty \\
& U=+\infty
\end{aligned}
$$

Model

$\Omega=\left\{r_{1}, \ldots, r_{7}\right\}$ with:

$$
\begin{array}{ll}
r_{1}=\left(v_{0}, v_{1}, v_{0}\right) & r_{5}=\left(v_{0}, v_{1}, v_{3}, v_{0}\right) \\
r_{2}=\left(v_{0}, v_{2}, v_{0}\right) & r_{6}=\left(v_{0}, v_{2}, v_{3}, v_{0}\right) \\
r_{3}=\left(v_{0}, v_{3}, v_{0}\right) & r_{7}=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right) \\
r_{4}=\left(v_{0}, v_{1}, v_{2}, v_{0}\right) &
\end{array}
$$

Min $2 \theta_{1}+2.8 \theta_{2}+2 \theta_{3}+3.4 \theta_{4}+3.4 \theta_{5}+3.4 \theta_{6}+4 \theta_{7}$ subject to

$$
\left\{\begin{aligned}
\theta_{1}+\quad \theta_{4}+\theta_{5}+\quad \theta_{7} & \geq 1 \\
\theta_{2}+\quad \theta_{4}+\quad & \theta_{6}+\theta_{7}
\end{aligned}\right.
$$

Optimal solution: $\theta=\{0,0,0,0,0,0,1\}$, value $=4$

Motivation for using the extended formulation

$[0,+\infty]$

[2,2]

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}} & =1, \mathrm{st} \\
\mathrm{i} & =0 \\
\mathrm{Q} & =+\infty \\
U & =+\infty
\end{aligned}
$$

Compact formulation: linear relaxation

Vehicle 1 (flow 0.5) Vehicle 2 (flow 0.5)

- $x^{1}{ }_{12}=x^{1}{ }_{21}=0.5 \quad$ - $x^{2}{ }_{12}=x^{2}{ }_{21}=0.5$
- $s_{1}^{1}=1, s^{1}{ }_{2}=2$
- $s^{2}{ }_{1}=1, s^{2}{ }_{2}=2$

Example of a feasible solution (value 0.2)

Motivation for using the extended formulation

$$
\operatorname{minimize} \sum_{1 \leq \Delta \Delta U} \sum_{(w, y) \in A} c_{i x} x_{0}^{x}
$$

subject to

$$
\begin{align*}
& \sum_{1 \leq u \leq U} \sum_{\left\{v_{j} \in V \mid\left(v_{i}, v_{j}\right) \in A\right\}} x_{i j}^{u} \geq 1 \quad\left(v_{i} \in V \backslash\left\{v_{0}\right\}\right), \\
& \begin{aligned}
\sum_{\left\{v_{j} \in V \mid\left(v_{i}, v_{j}\right) \in A\right\}} x_{i j}^{u}-\sum_{\left\{v_{j} \in V \mid\left(v_{j}, v_{i}\right) \in A\right\}} x_{j i}^{u}=0 & \left(v_{i} \in V, 1 \leq u \leq\right. \\
\sum_{\left\{v_{i} \in V \mid\left(v_{0}, v_{i}\right) \in A\right\}} x_{0 i}^{u} \leq 1 & (1 \leq u \leq U),
\end{aligned} \\
& \sum_{\left(v_{i}, v_{j}\right) \in A} d_{i} x_{i j}^{u} \leq Q \quad(1 \leq u \leq U), \tag{1.5}\\
& s_{i}^{u}+s t_{i}+c_{i j}-s_{j}^{u}+M x_{i j}^{u} \leq M \quad\left(\left(v_{i}, v_{j}\right) \in A, v_{j} \neq v_{0}, 1 \leq u \leq U\right), \tag{1.6}\\
& s_{i}^{u}+s t_{i}+c_{i 0}-b_{0}+M x_{i 0}^{u} \leq M \quad\left(\left(v_{i}, v_{0}\right) \in A, 1 \leq u \leq U\right), \tag{1.7}\\
& a_{i} \leq s_{i}^{u} \leq b_{i} \quad\left(v_{i} \in V, 1 \leq u \leq U\right), \tag{1.8}\\
& x_{i j}^{u} \in\{0,1\} \quad\left(\left(v_{i}, v_{j}\right) \in A, 1 \leq u \leq U\right) \text {, } \tag{1.9}
\end{align*}
$$

Motivation for using the extended formulation

Instance

$[0,+\infty]$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}}=1, \mathrm{st} \mathrm{t}_{\mathrm{i}}=0 \\
& \mathrm{Q}=+\infty \\
& \mathrm{U}=+\infty
\end{aligned}
$$

Extended formulation: linear relaxation

$\operatorname{Min} 2 \theta_{1}+2 \theta_{2}+2.1 \theta_{3}$
subject to

$$
\left\{\begin{array}{cc}
\theta_{1}+ & \theta_{3} \geq 1 \\
\theta_{2}+ & \theta_{3} \geq 1 \\
\theta_{1}, \ldots, \theta_{3} \geq 0 &
\end{array}\right.
$$

Optimal solution: $\theta=\{0,0,1\}$, value $=2.1$

A few words about Dantzig-Wolfe decomposition...

$$
\begin{equation*}
\operatorname{minimize} \sum_{1 \leq u \leq U} \sum_{\left(v_{i}, v_{j}\right) \in A} c_{i j} x_{i j}^{u} \tag{1.1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{1 \leq u \leq U} \sum_{\left\{v_{j} \in V \mid\left(v_{i}, v_{j}\right) \in A\right\}} x_{i j}^{u} \geq 1 \quad\left(v_{i} \in V \backslash\left\{v_{0}\right\}\right) \tag{1.2}
\end{equation*}
$$

$$
\begin{array}{rll}
\sum_{\left\{v_{j} \in V \mid\left(v_{i}, v_{j}\right) \in A\right\}} x_{i j}^{u}-\sum_{\left\{v_{j} \in V \mid\left(v_{j}, v_{i}\right) \in A\right\}} x_{j i}^{u}=0 & \left(v_{i} \in V, 1 \leq u \leq U\right), \\
\sum_{\left\{v_{i} \in V \mid\left(v_{0}, v_{i}\right) \in A\right\}} x_{0 i}^{u} \leq 1 & (1 \leq u \leq U), \\
\sum_{\left(v_{i}, v_{j}\right) \in A} d_{i} x_{i j}^{u} \leq Q & (1 \leq u \leq U), \\
s_{i}^{u}+s t_{i}+c_{i j}-s_{j}^{u}+M x_{i j}^{u} \leq M & \left(\left(v_{i}, v_{j}\right) \in A, v_{j} \neq v_{0}, 1 \leq u \leq U\right), \\
s_{i}^{u}+s t_{i}+c_{i 0}-b_{0}+M x_{i 0}^{u} \leq M & \left(\left(v_{i}, v_{0}\right) \in A, 1 \leq u \leq U\right), \\
a_{i} \leq s_{i}^{u} \leq b_{i} & \left(v_{i} \in V, 1 \leq u \leq U\right),
\end{array}
$$

DW decomposition

$$
\operatorname{minimize} \sum_{r_{k} \in \Omega} c_{k} \theta_{k}
$$

subject to

$$
\begin{aligned}
& \sum_{r_{k} \in \Omega} a_{i k} \theta_{k} \geq 1 \quad\left(v_{i} \in V \backslash\left\{v_{0}\right\}\right), \\
& \sum_{r_{k} \in \Omega} \theta_{k} \leq U \\
& \theta_{k} \in \mathbb{N} \quad\left(r_{k} \in \Omega\right)
\end{aligned}
$$

Basics of column generation PRINCIPLE

Master Problem and Restricted Master Problems

- Master Problem (MP): linear relaxation of the extended formulation
- Restricted Master Problem $\left(\operatorname{MP}\left(\Omega_{\mathrm{t}}\right)\right.$): restrict the variable set to a subset Ω_{t} of Ω

$$
\left(M P\left(\Omega_{1}\right)\right) \quad \text { minimize } \sum_{r_{k} \in \Omega_{1}} c_{k} \theta_{k}
$$

subject to

$$
\begin{aligned}
\sum_{r_{k} \in \Omega_{1}} a_{i k} \theta_{k} & \geq 1 \quad\left(v_{i} \in V \backslash\left\{v_{0}\right\}\right) \\
\sum_{r_{k} \in \Omega_{1}} \theta_{k} & \leq U \\
\theta_{k} & \geq 0 \quad\left(r_{k} \in \Omega_{1}\right)
\end{aligned}
$$

General scheme

- The aim of column generation is to solve MP
- The principle is to find a subset Ω_{t} such that solving $\operatorname{MP}\left(\Omega_{\mathrm{t}}\right)$ also solves MP

More detailed scheme

Computation of variable reduced costs

- Reduced cost is computed from optimal dual values
$\left(M P\left(\Omega_{1}\right)\right) \quad$ minimize $\sum_{r_{k} \in \Omega_{1}} c_{k} \theta_{k}$
subject to

$$
\begin{aligned}
& \sum_{r_{k} \in \Omega_{1}} a_{i k} \theta_{k} \geq 1 \quad\left(v_{i} \in V \backslash\left\{v_{0}\right\}\right), \\
& \sum \theta_{k} \leq U
\end{aligned}
$$

$$
\lambda_{i} \geq 0
$$

$$
\lambda_{0} \leq 0
$$

- Reduced cost of variable $\theta_{\mathrm{k}} \in \Omega$:

$$
c_{k}-\sum_{v_{i} \in V \backslash\left\{v_{0}\right\}} a_{i}^{k} \lambda_{i}-\lambda_{0}
$$

Remarks

- In what follows terms variables / columns / routes will be used indifferently
- A column is never generated more than once
- Every column in Ω_{t} has a nonnegative reduced cost when $\mathrm{MP}\left(\Omega_{\mathrm{t}}\right)$ is solved
- The algorithm is finite
- The number of columns in Ω is finite

Illustration on the previous example

- Initialization and iteration 1

$\Omega_{1}=\left\{r_{1}, r_{2}, r_{3}\right\}$ with $r_{1}=\left(v_{0}, v_{1}, v_{0}\right), r_{2}=\left(v_{0}, v_{2}, v_{0}\right), r_{3}=\left(v_{0}, v_{3}, v_{0}\right)$
Min $2 \theta_{1}+2,8 \theta_{2}+2 \theta_{3}$
subject to

$$
\left\{\begin{aligned}
\theta_{1} & \geq 1 \\
\theta_{2} & \geq 1 \\
& \theta_{3}
\end{aligned}\right) \geq 1
$$

$\operatorname{Max} \lambda_{1}+\lambda_{2}+\lambda_{3}$ subject to

$$
\left\{\begin{array}{ccc}
\lambda_{1} & & \leq 2 \\
& \lambda_{2} & \leq 2.8 \\
& & \\
& \lambda_{3} & \leq 2 \\
\lambda_{1}, \ldots, \lambda_{3} \geq 0
\end{array}\right.
$$

Optimal solution (cost $=6.8$)
$\theta=(1 ; 1 ; 1)$
$\lambda=(2 ; 2.8 ; 2)$
Route $\mathrm{r}_{4}=\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{0}\right)$ has a reduced cost -1.4 (reduced cost $=3.4-2-2.8=-1.4$)

Illustration on the previous example

- Iteration 2

Data

$[0,+\infty]$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}}=1, \mathrm{st} t_{\mathrm{i}}=0 \\
& \mathrm{Q}=+\infty \\
& \mathrm{U}=+\infty
\end{aligned}
$$

$\Omega_{2}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ with $r_{4}=\left(v_{0}, v_{1}, v_{2}, v_{0}\right)$
Min $2 \theta_{1}+2,8 \theta_{2}+2 \theta_{3}+3.4 \theta_{4}$ subject to

$$
\left\{\begin{aligned}
\theta_{1}+\theta_{4} & \geq 1 \\
\theta_{2}+\theta_{4} & \geq 1 \\
\theta_{3} & \geq 1 \\
\theta_{1}, \ldots, \theta_{3}, \theta_{4} & \geq 0
\end{aligned}\right.
$$

Optimal solution (cost $=5.4$) $\theta=(0 ; 0 ; 1 ; 1)$
$\lambda=(2 ; 1.4 ; 2)$
Route $\mathrm{r}_{7}=\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{0}\right)$ has a reduced cost -1.4 (reduced cost $=4-2-1.4-2=-1.4$)

Illustration on the previous example

- Iteration 3

$[0,+\infty]$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}}=1, \mathrm{st} \mathrm{t}_{\mathrm{i}}=0 \\
& \mathrm{Q}=+\infty \\
& \mathrm{U}=+\infty
\end{aligned}
$$

$\Omega_{3}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{7}\right\}$ with $r_{7}=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right)$
Min $2 \theta_{1}+2,8 \theta_{2}+2 \theta_{3}+3,4 \theta_{4}+4 \theta_{7} \quad$ Max $\lambda_{1}+\lambda_{2}+\lambda_{3}$ subject to

$$
\left\{\begin{aligned}
& \theta_{1}+\theta_{4}+\theta_{7} \geq 1 \\
&+\theta_{4}+\theta_{7} \geq 1 \\
& \theta_{2}+\theta_{7} \geq 1 \\
& \theta_{3}+\ldots, \theta_{4}, \theta_{7} \geq 0
\end{aligned}\right.
$$

Optimal solution $(\operatorname{cost}=4)$ subject to

$$
\theta=(0 ; 0 ; 0 ; 0 ; 1)
$$

$$
\left\{\begin{array}{rll}
\lambda_{1} & & \leq 2 \\
& \lambda_{2} & \\
& & \leq 2,8 \\
& \lambda_{3} & \leq 2 \\
\lambda_{1}+\lambda_{2} & \leq 3,4 \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & \leq 4 \\
\lambda_{1}, \ldots, \lambda_{3} \geq 0
\end{array}\right.
$$

$\lambda=(1 ; 2 ; 1)$
No route with a negative reduced cost exists: solution θ is also optimal for MP

Remarks

- Equivalently, a variable with negative reduced cost is associated with a violated constraint in the dual program of $\mathrm{MP}\left(\Omega_{\mathrm{t}}\right)$

$$
\left(D\left(\Omega_{1}\right)\right) \quad \text { maximize } \sum_{v_{i} \in V \backslash\left\{v_{0}\right\}} \lambda_{i}+U \times \lambda_{0}
$$

subject to

$$
\begin{aligned}
\sum_{v_{i} \in V \backslash\left\{v_{0}\right\}} a_{i}^{k} \lambda_{i}+\lambda_{0} & \leq c_{k} \\
\lambda_{i} & \geq 0 \\
\lambda_{0} & \leq 0
\end{aligned}
$$

- Adding a column amounts to adding a violated constraint in the restricted dual program

Remarks

- At each iteration, the solution of $\mathrm{MP}\left(\Omega_{\mathrm{t}}\right)$ provides a feasible primal solution and non-necessarily feasible dual solution (with the same cost). If the dual solution is feasible, they are both optimal (weak duality theorem) I SAINT-ETIENNE

Remarks

- Dual point of view

- Equivalent to Kelley's algorithm for convex nonlinear programming

Remark

- Having generated the columns of the optimal solution is not necessarily sufficient for the algorithm to stop
- Illustration (initial set of column)

$$
\Omega_{1}=\left\{r_{7}\right\} \text { with } r_{7}=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right)
$$

$\operatorname{Min} 4 \theta_{7}$
subject to

$$
\left\{\begin{array}{l}
\theta_{7} \geq 1 \\
\theta_{7} \geq 1 \\
\theta_{7} \geq 1 \\
\theta_{7} \geq 0
\end{array}\right.
$$

$$
\begin{aligned}
& \operatorname{Max} \lambda_{1}+\lambda_{2}+\lambda_{3} \\
& \text { subject to } \\
& \left\{\begin{array}{l}
\lambda_{1}+\lambda_{2}+\lambda_{3} \leq 4 \\
\lambda_{1}, \ldots, \lambda_{3} \geq 0
\end{array}\right.
\end{aligned}
$$

Remark

- Illustration (first iteration)

$$
\left.\begin{array}{l}
\Omega_{1}=\left\{r_{7}\right\} \text { with } r_{7}=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right) \\
\text { Min } 4 \theta_{7} \\
\text { subject to } \\
\qquad\left\{\begin{array}{l}
\theta_{7} \geq 1 \\
\theta_{7} \geq 1 \\
\theta_{7} \geq 1 \\
\theta_{7} \geq 0
\end{array}\right. \\
\text { Max } \lambda_{1}+\lambda_{2}+\lambda_{3} \\
\text { subject to }
\end{array}\right\}\left\{\begin{array}{l}
\lambda_{1}+\lambda_{2}+\lambda_{3} \leq 4 \\
\lambda_{1}, \ldots, \lambda_{3} \geq 0
\end{array}\right\}
$$

Route $r_{1}=\left(v_{0}, v_{1}, v_{0}\right)$ has a reduced cost -2

Remark

- Illustration (second iteration...)

$$
\Omega_{2}=\left\{r_{7}, r_{1}\right\} \text { with } r_{1}=\left(v_{0}, v_{1}, v_{0}\right)
$$

$\operatorname{Min} 4 \theta_{7}$
subject to

$$
\begin{cases}\theta_{7}+\theta_{1} & \geq 1 \\ \theta_{7} & \geq 1 \\ \theta_{7} & \geq 1 \\ \theta_{7}, \theta_{1} \geq 0 & \end{cases}
$$

$\operatorname{Max} \lambda_{1}+\lambda_{2}+\lambda_{3}$
subject to

$$
\left\{\begin{array}{l}
\lambda_{1}+\lambda_{2}+\lambda_{3} \leq 4 \\
\lambda_{1} \leq 2 \\
\lambda_{1}, \ldots, \lambda_{3} \geq 0
\end{array}\right.
$$

Optimal solution $(\operatorname{cost}=4)$ $\theta=(1 ; 0)$
$\lambda=(0 ; 4 ; 0)$
Route $\left(\mathrm{v}_{0}, \mathrm{v}_{2}, \mathrm{v}_{0}\right)$ has a negative reduced cost -1.2

Basics of column generation

IMPLEMENTATION

Initial set of columns: efficiency

- A good initial set of columns is a set of columns that help limiting oscillations of dual variables
- However, the initial set of columns doesn't necessarily have a strong impact on the efficiency of the method
- Actually, in first iterations, "good" columns can usually be found quickly
- Example of initial sets
- Columns obtained from a heuristic solution
- $\left\{\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{0}\right), \ldots,\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{0}\right)\right\}$
- Preventing from dual oscillations is also the subject of stabilization techniques (see later)

Initial set of columns: feasibility

- A feasible linear program is needed to start the algorithm
- If it is difficult to obtain a set of columns that ensures feasibility, artificial variables can be added
- Artificial variables can be viewed as subcontracted services
- Examples:
- a high cost route that serves all customers
- High cost routes that visit each a single customer and that do not appear in the fleet size constraint

Other remarks

- A usual practice is to generate several columns at each iteration
- Save iterations
- If too many columns have been generated, columns that never enter the basis can be removed (with the sole risk that they may be generated again later)
- Save solution time for $\operatorname{MP}\left(\Omega_{\mathrm{t}}\right)$
- Usually useless for vehicle routing problems
- Be careful with numerical imprecision
- Risk of being trapped in the repeated generation of the same column with reduced cost that looks like -0.00000001

Basics of column generation

PRICING PROBLEM

Recall of the column generation scheme

[^0]
Reformulation of the pricing problem

- Find $r_{k} \in \Omega$ such that
- Equivalently, find $r_{k} \in \Omega$ such that

$$
\sum_{\left(v_{i}, v_{j}\right) \in A} b_{i j}^{k}\left(c_{i j}-\lambda_{i}\right)<0
$$

with $b^{k}{ }_{i j}=1$ when $\operatorname{arc}\left(v_{i}, v_{\mathrm{j}}\right)$ belongs to route r_{k}

Reformulation of the pricing problem

- Can be expressed as the following combinatorial optimization problem:

Find the shortest path in the graph G, with arc costs $c_{i j}-\lambda_{i}$, from v_{0} to v_{0}, subject to capacity and time windows constraints, such that no vertex is traversed more than once

$$
v_{0} \cdots v_{i} \stackrel{c_{i j}-\lambda_{i}}{v_{i}} \cdots \cdots v_{0}
$$

- This problem is known as the Elementary Shortest Path Problem with Resource Constraint (ESPPRC)

Remarks

- The ESPPRC is NP-hard in the strong sense
- It is usually solved with Dynamic Programming
- Other possibilities: branch-and-cut, Constraint Programming...
- The optimal solution is not needed; one can stops as soon as one (or a "sufficient" number) of paths with negative costs are found
- One can first search for good solutions with a heuristic (e.g., tabu search)
- One can exploit the fact that paths from the current basis have a cost equal to zero

Complete column generation scheme

 IT SAINT-ETIENNE

SOLUTION OF THE ESPPRC

 T SAINT-ETIENNE
Dynamic programming algorithm

No capacity constraints
$\lambda=(2 ; 2.8 ; 2)$
Labels: [cost,time, $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$]

- [0,0,(0,0,0)]
[1,1]
 N

Dynamic programming algorithm

No capacity constraints
$\lambda=(2 ; 2.8 ; 2)$
Labels: [cost,time, $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$]

Dynamic programming algorithm

No capacity constraints
$\lambda=(2 ; 2.8 ; 2)$
Labels: [cost,time, $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$]

Dynamic programming algorithm

No capacity constraints
$\lambda=(2 ; 2.8 ; 2)$
Labels: [cost,time, $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$]
 1 SAINT-ETIENNE

Dynamic programming algorithm

No capacity constraints
$\lambda=(2 ; 2.8 ; 2)$
Labels: [cost,time, $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$]

Basics of column generation BRANCH-AND-PRICE

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Why branch-and-price?

- Recall that column generation is just a method to solve a linear program
- It is embedded in branch-and-bound to solve the integer program
- At each node of the search tree (including the root node), column generation is used to compute the LP relaxation
- The name branch-and-price just emphasizes the fact that column generation is applied at each node
- The main issue with branch-and-price is that one has to be careful about the way separation is applied

Separation rule

- Standard separation rule in branch-and-bound

Separation rule

- Standard separation rule in branch-and-bound

Master problem: remove θ_{k} (or fix $\theta_{\mathrm{k}}=0$)
Pricing problem: forbid path r_{k} (ESPPRC with forbidden paths)

Separation rule

- Standard separation rule in branch-and-bound

Master problem: fix $\theta_{\mathrm{k}}=1$, remove (or fix to 0) all other columns where a customer from route r_{k} is visited
Pricing problem: remove customers from route r_{k} from the graph

Separation rule

- Standard separation rule in branch-and-bound

Separation rule

- Standard separation rule in branch-and-bound

+ Inefficient : strong imbalance of the search tree

Separation rule

- Usual separation rule

```
Solve MP
Select an arc ( }\mp@subsup{v}{i}{},\mp@subsup{v}{j}{})\mathrm{ with a
    fractional flow
```

forbid the use of $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$

> First pending node

- It can be shown that in any fractional solution an arc with a fractional flow exists

Separation rule

- Usual separation rule

```
Solve MP
Select an \(\operatorname{arc}\left(v_{i}, v_{j}\right)\) with a fractional flow
```

forbid the use of $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$

First pending node
impose to use $\operatorname{arc}\left(v_{i}, v_{j}\right)$

Second pending node

Master problem: remove (or fix to 0) all columns that use $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
Pricing problem: remove arc $\left(v_{i}, v_{j}\right)$ from the graph

Separation rule

- Usual separation rule

```
Solve MP
Select an \(\operatorname{arc}\left(v_{i}, v_{j}\right)\) with a fractional flow
```

forbid the use of $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$

> First pending
> node
impose to use arc $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$

Second pending node

Master problem: remove (or fix to 0) all columns that use an arc $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)$ with $\mathrm{k} \neq \mathrm{j}$ or an $\operatorname{arc}\left(v_{k}, v_{j}\right)$ with $k \neq i$
Pricing problem: remove $\operatorname{arcs}\left(v_{i}, v_{k}\right)$ with $k \neq j$ and $\operatorname{arcs}\left(v_{k}, v_{j}\right)$ with $k \neq i$ from the graph

Separation rule

- Usual separation rule

Easy + efficient

Remarks

- It is generally admitted that in branch-and-price one should branch on the variables of the compact formulation
- It is possible to add constraints in the Master Problem when branching
- The new dual variables then have to be considered when computing the reduced costs in the pricing problem
- (dumb) Example

Impose $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$

$$
\begin{aligned}
& \text { Add constraint } \sum b^{\mathrm{k}} \mathrm{ij}_{\mathrm{k}} \geq 1 \text { in } \\
& \text { the master problem } \\
& \text { Imply new dual variable } \lambda_{\mathrm{ij}}
\end{aligned}
$$

Set cost of $\operatorname{arc}\left(v_{i}, v_{j}\right)$ to $\mathrm{c}_{\mathrm{ij}}-\lambda_{\mathrm{I}}-\lambda_{\mathrm{ij}}$ in the pricing problem

Remarks

- One can start by branching on the number of vehicles (if it is fractional)
- Usually, the impact on the lower bound is very strong
- The risk is to impose a maximal value that is too small (unfeasible solution) and that the algorithm spends a long time to close the node

Basics of column generation

CONCLUSION

Summary

- The extended formulation gives a far better lower bound than the compact formulation
- It is theoretically obtained from the compact formulation through Dantzig-Wolfe decomposition
- Column generation is needed to compute its linear relaxation
- It implies solving repeatedly NP-hard pricing problems (ESPPRC)

Other comments

- Branch-and-price is very generic
- Application to different Vehicle Routing Problems only imply different resource constraints in the pricing problem
- Most of the computing time is spent when solving the pricing problem
- Way of improvement 1: accelerate solution time of the pricing problem,
- Way of improvement 2: reduce the number of iterations
- Number of iterations per node: generation of good sets of columns at each iteration, stabilization techniques
- Number of nodes: add valid inequalities (branch-price-and-cut)

Accelerate solution time for the pricing problem

- Accept non-elementary routes
- The pricing problem becomes weakly NP-hard
- The quality of the LP bound may decrease a lot...
- Accept some non-elementary routes
- Accept routes without 2-cycles, 3-cycles...
- Ng-routes
- Ng-set(i): subset of customers that vertex i is able to "remember"
- Memory(L): memory of label L
- A label cannot be extended to a vertex in its memory
- Dynamic relaxation

Improve the relaxation with valid inequalities

- Subset-row inequalities
- Use a set-partitioning formulation
- Find r_{1}, r_{2}, r_{3} such that
- r_{1} visits i_{1} and i_{2}
- r_{2} visits i_{1} and i_{3}
- r_{3} visits i_{2} and i_{3}
- $\theta_{1}+\theta_{2}+\theta_{3} \geq 1$
- Add valid inequality $\theta_{1}+\theta_{2}+\theta_{3} \leq 1$
- But the new dual variable complicates the pricing problem...

Other comments

- Typical statistics for column generation applied to the VRPTW:
- solve instances with less than 100 customers (up to to 200 for advanced implementations)
- a few nodes in the search tree
- several thousand columns generated
- several hundred iterations

Some references

R. Baldacci, P. Toth, and D. Vigo. Recent advances in vehicle routing exact algorithms. 4OR, 5(4):269-298, 2007.
C. Barnhart, C.A. Hane, and P.H. Vance. Using Branch-and-Price-andCut to solve origin-destination integer multicommodity flow problems. Operations Research, 48(2):318-326, 2000.
G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column generation. GERAD 25th Anniversary Series. Springer, 2005.
G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and generalized k -path inequalities for the vehicle routing problem with time windows. Transportation Science, 42(3):387-404, 2008.
M. Desrochers, J. Desrosiers, and M.M. Solomon. A new optimization algorithm for the Vehicle Routing Problem with Time Windows. Operations Research, 40(2):342-354, 1992.
D. Feillet. A tutorial on column generation and branch-and-price for vehicle routing problems. 4, 8(4):407-424, 2010.
M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research, 53(6):1007-1023, 2005.

[^0]: Pricing problem
 (or subproblem, or slave problem or oracle)

