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Abstract

We show that the atoms by clique separator decomposition of hole- and diamond-free
graphs are of three simple types: clique, matched co-bipartite or chordal bipartite.

We present an O(n2) time algorithm to recognize these graphs and decompose them into
atoms, whereas this decomposition requires O(nm) time for almost all graph classes. To
ensure this good time bound, we use algorithm LexBFS in a novel fashion, highlighting its
behavior in the vicinity of clique separators in a general graph.

Given the atoms, we show how to compute a minimal triangulation in O(n2) time,
thereby introducing algorithms for the minimal triangulation of both matched co-bipartite
graphs and chordal bipartite graphs.

Our results enable us to provide efficient solutions to some enumeration and optimization
problems.
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1 Introduction

Cycle properties of graphs and their algorithmic aspects play a fundamental role in combinatorial
optimization, discrete mathematics and computer science. Chordal graphs, weakly chordal
graphs and perfect graphs are characterized in terms of cycle properties; these classes are of
fundamental importance for algorithmic graph theory and various applications.

A diamond is a 4-clique minus one edge, a C4 is a chordless cycle with 4 vertices, and a
hole is a chordless cycle of length at least 5. A graph is chordal (also called triangulated) if
it is hole- and C4-free. See e.g. [11, 14, 27] for the many facets of chordal graphs. A graph
is weakly chordal (also called weakly triangulated) if it is hole- and antihole-free. These graphs
have been extensively studied in [15, 16, 17, 34]; they are perfect. Hole- and diamond-free
graphs (HD-free graphs for short) generalize in a natural way the important class of chordal
bipartite graphs (which are exactly the bipartite weakly chordal graphs), and diamond-free
chordal graphs are the well-known block graphs - see [11] for various characterizations and the
importance of chordal bipartite graphs as well as of block graphs.

Recently there has been much work on related classes such as even-hole- and diamond-free
graphs (forbidding also C4) [23] (see also [36]) and [13] dealing with the structure and recognition
of C4- and diamond-free graphs.

Work has also appeared describing properties of the atoms of a graph. Atoms are obtained
by clique separator decomposition: a clique separator (or clique cutset) is a clique whose removal
increases the number of connected components of the graph. Given a graph G with a clique
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separator S, where C is a component of G − S, graph G is decomposed into subgraphs C ∪ S
and G− C, which can in turn be decomposed. The final set of subgraphs obtained, which are
then devoid of clique separators, are called atoms. This process was introduced by Tarjan [35].
It is well known that a graph is decomposable into cliques if and only if it is chordal. Though
a graph may not have any clique separator, the process is of high interest since it is hole- and
C4- preserving (see [6] for a complete survey on clique separator decomposition).

Structural properties of atoms in some graph classes were used recently to give new efficient
algorithms for the Maximum Weight Independent Set problem on these classes [9, 10]. These
properties of atoms improve polynomial time solutions of this problem published previously in
various papers.

Another problem related to the presence of holes is Minimal Triangulation, which consists
in adding an inclusion-minimal set of edges to obtain a chordal graph. This problem has also
given rise to many recent papers. The time bound for this problem, originally O(nm) [32],
was recently lowered to O(n2.69) time [24] and even O(nαlogn) [19]. A special issue of Discrete
Mathematics [1] is published on the subject, containing a survey on minimal triangulation [18].

Recently, [8] characterized the class of hole- and paraglider-free graphs via clique separator
decomposition (a paraglider is a graph with vertices a, b, c, d, e and edges ab, ac, bc, bd, cd, ae, de).
¿From this, the structure of HD-free atomic graphs with no induced C6 can be deduced. [8]
also gave as algorithmic consequences an O(n3) process for recognizing hole- and paraglider-free
graphs, as well as some polynomial time algorithms for solving several optimization problems
such as Maximum Clique and Coloring.

In this paper, we focus our attention on HD-free graphs. Our results are threefold:
We characterize the atoms.
We give an efficient recognition algorithm.
We give an efficient minimal triangulation algorithm.

First, we show that in an HD-free graph, an atom which is not a clique can be of only two
‘opposite’ kinds: a chordal bipartite graph (i.e. a bipartite graph with no hole) or a matched
co-bipartite graph (i.e. a graph consisting of two disjoint cliques of the same size and a perfect
matching between them); in the rest, we will call an edge between X and Y a matching edge.

This property is not sufficient to characterize the class of HD-free graphs, as a graph whose
atoms are HD-free may contain diamonds which belong to two different atoms. This leads to
the definition of two graph classes: HD-free graphs, and the super-class of graphs whose atoms
are HD-free, which we call HD-free decomposable graphs. HD-free graphs generalize chordal
bipartite graphs, whereas HD-free decomposable graphs also generalize chordal graphs.

We then go on to the algorithmic aspects of recognition and decomposition. We show that
we can decompose and recognize HD-free graphs in O(n2) time. A straightforward approach
would cost O(nm) time to compute a decomposition into atoms [32]. Note that testing for
a hole costs O(m2) time [29], which is roughly also the cost of testing for the presence of a
diamond, so that a brute-force approach to recognizing HD-free graphs would cost O(m2) time.

This is an interesting result in its own right, as there are few other known classes where
clique separator decomposition can be done faster than in the general case. AT-free claw-free
graphs can be decomposed in linear time by first computing a minimal triangulation into a
proper interval graph, which is linear [28].

To recognize HD-free graphs efficiently, we first decompose the graph using the clique sep-
arators of size 1 or 2. Since in a chordal bipartite graph the clique separators are of size at
most 2, the chordal bipartite atoms are thereby separated from the rest. We are left with some
possibly non-atomic subgraphs which can contain only matched co-bipartite atoms (with at
least 6 vertices) and clique atoms; we call those graphs multimat graphs.

We then apply algorithm LexBFS to these multimat subgraphs. LexBFS, originally tailored
to define a simplicial elimination scheme on a chordal graph [32], is a linear-time breadth-first
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search which numbers the vertices from n to 1 and chooses at each step a vertex whose label
(which is the list of its numbered neighbors) is lexicographically highest.

In this paper, we show two new properties for LexBFS, which are both true on general
graphs. The first property is that the vertex which is numbered as 1 by LexBFS belongs to
no clique separator. In a multimat graph, this will enable us to find a maximal set of vertices
which belong to only one atom, and also to determine the corresponding clique separator which
separates this atom from the rest of the graph. We will thus define for multimat graphs an
elimination scheme which is very similar to the simplicial elimination scheme for chordal graphs.

The second property is a new invariant for LexBFS w.r.t. clique separators: given a LexBFS
ordering α, we show that we can remove any component of any clique separator: the sub-ordering
induced by α on the remaining subgraph is a LexBFS ordering in its own right. The benefit
of this in a multimat graph is that when we find a set C of vertices which belong to only one
atom, this defines a component of the corresponding clique separator. We can remove C and
avoid running LexBFS on the resulting graph. Thus instead of running O(n) times LexBFS,
we use a single LexBFS ordering, thus gaining a factor of n.

This leads us to another aspect of our work: in the general case, computing a minimal
triangulation is a mandatory pre-processing step to ensure an efficient time bound for clique
decomposition [35]. Here, we will do the exact opposite: we use the atoms to ensure a good
time bound for minimal triangulation.

We show how to compute a minimal triangulation of an HD-free atom in O(n2) time. For
matched co-bipartite graphs, we define a standard minimal triangulation: computing each added
edge will cost constant time. Triangulation of chordal bipartite graphs was investigated by
Kloks and Kratsch [22] in the context of computing their treewidth, but they did not propose
an efficient minimal triangulation algorithm for this class; we introduce an O(n2) minimal
triangulation process for chordal bipartite graphs using the associated Γ-free matrix. Again,
few graph classes are known to have a better bound than O(nm) for this problem. This result
contributes to illustrate how clique separator decomposition can be useful for developing more
efficient algorithms.

The paper is organized as follows: in Section 2, we characterize the atoms of HD-free graphs.
In Section 3, we present our O(n2) time algorithm to recognize and decompose HD-free graphs.
In Section 4, we address the problem of computing a minimal triangulation for HD-free atoms
in O(n2) time. After a conclusion and bibliography, we add an Appendix containing the proofs
not given in the previous sections.

Throughout the paper, we consider finite undirected graphs; + stands for disjoint union; for a
graph G = (V,E), n = |V | and m = |E|, d(x) denotes the degree of vertex x, N [x] = N(x)∪{x},
and for X ⊂ V , G(X) denotes the subgraph induced by X. A separator is a set of vertices
whose removal increases the number of connected components. In a connected graph, a sepa-
rator S is said to be minimal if G(V − S) has at least two full components, i.e. components
C1 and C2 such that N(C1) = N(C2) = S. For other classical graph definitions, see [14] and [11].

2 Characterizing HD-free atoms

In this section, we will show the following structural result:

Theorem 2.1. Let G be an HD-free graph with no clique separator. Then G is either:
- a clique, or
- a matched co-bipartite graph, or
- a chordal bipartite graph.
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The following theorem describes the structure of HD-free atoms that contain a C6. This result
also appears as a corollary in [8], but to make the paper self-contained we give a simpler direct
proof below.

Theorem 2.2. Let G be an HD-free atom that contains an induced C6. Then G is a matched
co-bipartite graph.

Proof. Let H be a maximal matched co-bipartite graph that extends a C6 in G. Let V (H) be
partitioned into two cliques A = {a1, . . . , ak} and B = {b1, . . . , bk}, with k ≥ 3, where H has
matching edges a1b1, . . . , akbk.
Claim 1 : For every vertex x of G−H, NH(x) is a clique.
Proof of Claim 1: Suppose that NH(x) is not a clique, so, up to relabeling, x is adjacent to
a1 and b2. Then x is adjacent to one of a3 and b3, for otherwise {x, a1, a3, b3, b2} induces a C5.
Assume, up to symmetry, that x is adjacent to a3. If x is not adjacent to a2, then {x, a1, a2, a3}
induces a diamond; if x is adjacent to a2, then {x, a1, a2, b2} induces a diamond, a contradiction.
So Claim 1 holds. �
Claim 2 : Let F be any component of G−H. Then NH(F ) is a clique.
Proof of Claim 2: Suppose that there are non-adjacent vertices x and y in NH(F ). Let u be
a neighbor of x in F and v be a neighbor of y in F . Note that u 6= v by Claim 1. There is a
chordless path P between u and v in F . We choose x, y, u, v and P such that P is as short as
possible. Up to relabeling, let x = a1 and y = b2. Then Claim 1 implies that ub3 and va3 are
not edges. Any interior vertex w of P is not adjacent to a1 or a3, for otherwise the subpath
of P between w and v contradicts the choice of P ; and similarly, w is not adjacent to b2 or b3.
Since V (P ) ∪ {a1, a3, b2, b3} cannot contain a hole, it must be that ua3 and vb3 are edges and
P = uv. Now, since u is adjacent to a1 and a3, by Claim 1, we have NH(u) ⊆ A and similarly,
NH(v) ⊆ B. Then u is adjacent to every vertex ai in A, for otherwise {u, a1, a3, ai} induces a
diamond. So NH(u) = A, and similarly, NH(v) = B. But then V (H)∪{u, v} induces a matched
co-bipartite graph, which contradicts the maximality of H. �
In conclusion, if G − H has a component F , then, by Claim 2, NH(F ) is a clique separator
(separating F from H −NH(F )), a contradiction to the assumption that G is an atom. There-
fore we have G = H, and so G is a matched co-bipartite graph. This finishes the proof of
Theorem 2.2.

The following theorem describes the structure of HD-free atoms that do not contain a C6.

Theorem 2.3. Let G be an HD-free atom that contains no induced C6. Then G is either a
clique or a chordal bipartite graph.

Proof. The fact that G is diamond-free means that (i) the neighborhood of every vertex is
P3-free, i.e., it is a disjoint union of cliques, and (ii) every edge lies in exactly one maximal
clique of G.

Suppose that G is not bipartite. So G contains an odd cycle, and since G is hole-free, G
contains a triangle. Let a, x, y be three pairwise adjacent vertices in G. Let K be the maximal
clique that contains {a, x, y} (K is unique by (ii)). Suppose that N [a] = K. If V (G)−K 6= ∅,
then K − {a} is a clique separator, a contradiction. So V (G) = K, thus G is a clique. Now
we may assume that a belongs to another maximal clique L. By (i), there is no edge between
K−{a} and L−{a}. Since G has no clique separator, K−{x} and K−{y} are not separators,
so there is a chordless path Px between x and L in G−(K \{x}) and there is a chordless path Py
between y and L in G− (K −{y}). We choose Px and Py such that V (Px)∪ V (Py) is minimal.

Let ux be the neighbor of x in Px and uy be the neighbor of y in Py. Clearly, ux, uy /∈ N [a].
We have yux /∈ E, for otherwise {a, x, y, ux} induces a diamond. Likewise, xuy /∈ E. Thus
ux 6= uy. Vertex x has no neighbor in Py −{y} (else there is a path P ′x from x to L in Py ∪{x},
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and we have ux /∈ V (P ′x)∪V (Py), so the minimality of V (Px)∪V (Py) is contradicted). Similarly
y has no neighbor in Px−{x}. It follows that uxuy ∈ E, for otherwise ux, x, y, uy lie on a hole in
Px∪Py. Let vx be the first vertex in Px−{x} (starting from ux) that belongs toN(a); then uxvx is
an edge, for otherwise P [x, ux, . . . , vx]∪{a} induces a hole. If uyvx ∈ E, then {a, x, y, ux, uy, vx}
induces a C6. If uyvx /∈ E, then {a, y, uy, ux, vx} induces a C5, a contradiction. In conclusion,
G is bipartite, and since it is hole-free it is chordal bipartite. 2

Theorem 2.1 now follows from Theorems 2.2 and 2.3. As discussed in the introduction, this
atomic structure is not characterizing, as it is shared by the classes of HD-free graphs and of
HD-free decomposable graphs.

3 Decomposing and recognizing HD-free graphs

We will now address the recognition problem for HD-free graphs. To achieve this, we will find
the atoms of the graph, so the decomposition is obtained at the same time.

We will apply five successive steps. The first four are straightforward; as we will see, after
completing these steps, we will be left with a last, but more difficult step, which is the recognition
(and decomposition into atoms) of multimat graphs:

Definition 3.1. A multimat graph is a diamond-free graph whose atoms are either matched
co-bipartite graphs with at least six vertices, or cliques, and whose clique separators are of size
at least 3.

In a multimat graph, a matched co-bipartite atom X+Y is separated from the other atoms
by a clique separator of size at least 3, so atom X + Y is separated from the other atoms by
vertices of X or by vertices of Y , but never by a separator containing a matching edge.

We will describe the first four steps in Section 3.1, and then go on to give the more difficult
details of handling multimat graphs, our final step, in Section 3.2.

3.1 Obtaining the multimat subgraphs

1. For recognizing HD-free graphs, the first step is to decompose G into its biconnected
components [21], since G is HD-free if and only if its biconnected components are HD-
free.

2. The second step is to decompose the graph using its clique separators of size 2. This
can easily be extracted from the decomposition of the graph into its triconnected compo-
nents [20]. The subgraphs obtained will be the maximal subgraphs containing no clique
separator of size 2.

After these two steps, all the chordal bipartite atoms are defined. Note that if a matched co-
bipartite atom has only two or four vertices, it is considered in all the rest to be a chordal
bipartite atom, so what we call matched co-bipartite atoms have at least six vertices. At the
end of Step 2, we obtain subgraphs which can be of four types: chordal bipartite atoms, clique
atoms, matched co-bipartite atoms, or multimat graphs.

3. Our third step will be to check the subgraphs obtained after Step 2. Cliques and matched
co-bipartite graphs can be recognized in linear time. Chordal bipartite graphs can be
recognized in O(min(n2,mlogn)) time [30],[33]. Any other subgraph should be a multimat
subgraph, and still needs to be decomposed and recognized. The cost of this third step is
globally O(n2): the overlap between the various subgraphs is a clique minimal separator
of size at most 2, there are less than n clique minimal separators, and each clique minimal
separator yields at most n components [6], so the overall extra cost generated by the
overlap is O(n2).
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4. The fourth step is to check for the presence of diamonds which are separated by a clique
separator of size 2: this can occur when two subgraphs which are not both chordal bipartite
share such a separator. We will thus check, for each size 2 clique separator, which atoms
or multimat subgraphs it belongs to. Since there are less than n atoms and less than n
clique minimal separators in a graph [6], this can be done in O(n2) time.

After these four steps (which can be considered as a pre-processing), we will check and
decompose each multimat subgraph separately in O(n2) time. The global cost of our decompo-
sition and algorithm is thus O(n2), since the decompositions into biconnected and triconnected
components both require only linear time [21], [20].

3.2 Decomposing a multimat graph

On each multimat subgraph obtained, we will apply the following decomposition step, intro-
duced in [35] to produce atoms: Let G = (V,E) be a graph, S a clique separator of G, C a
connected component of G(V −S); decompose the graph into subgraphs G(C∪S) and G(V −C).

To obtain the atoms, we will apply a special instance of this decomposition step: we will use
a component C consisting of vertices which belong to only one atom. Thus the decomposition
step becomes:

Decomposition Step 3.2. Let G = (V,E) be a graph, S a clique separator of G, C a maximal
connected set of vertices which belong to only one atom; produce atom G(C ∪ S) and remove C
from the graph.

The desired component and separator will be found in the vicinity of a vertex x1 which is
numbered as 1 by some LexBFS execution, by virtue of the properties of x1 regarding separators
which were introduced in [3]:

Theorem 3.3. [3] The vertex numbered 1 by LexBFS in a non-clique graph belongs to a maximal
clique module X1 (i.e. ∀u, v ∈ X1, N [u] = N [v]) whose neighborhood is a minimal separator
(X1 is called a moplex).

This means that it is easy to find a minimal separator S1 in N(x1) and that moreover all
the vertices of N(x1) which are not in S1 are ‘true twins’ with x1, forming the moplex X1. The
particular moplex found by LexBFS has additional local connectivity properties which will be
useful in our proofs

We will now present our first new result on LexBFS:

Theorem 3.4. The vertex x1 numbered 1 by an execution of LexBFS cannot belong to a clique
minimal separator. Moreover, if X1 is the maximal clique module containing x1, no vertex of
X1 can belong to a clique minimal separator, i.e., all the vertices of X1 belong to only one atom.

Theorem 3.4 will enable us to define the atom A which vertex x1 belongs to, and to find
the corresponding clique separator. We will examine separately the case where this atom A is
a clique and the case where A is matched co-bipartite.

If x1 belongs to a clique atom, then S1 = N(X1) is a clique minimal separator, and X1 is
a maximal connected set of vertices belonging to only one atom: applying Decomposition Step
3.2, we produce atom X1 ∪ S1 and remove X1.

When the atom containing x1 is matched co-bipartite, things are more complicated. Let X
be the clique of the matched co-bipartite which x1 belongs to, let Y be the second clique. We
will first remark that X1 = {x1}, as in a matched co-bipartite graph, no vertex can have a ‘true
twin’. N(x1) is made of two parts: the rest of X, and y1, the neighbor of x1 in Y . Since in a
multimat graph the matched co-bipartite atoms have at least six vertices, X must be of size at
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least 3, and thus X − {x1} must be of size at least 2. Thus vertex y1 is isolated in S1, and is
easily distinguished from the vertices of X − {x1}, which define a clique of size at least 2. The
vertices of X all belong to only one atom, so Y = N(X). This is summarized in the following
Lemma:

Lemma 3.5. Let G be a multimat graph containing at least two atoms, let x1 be a vertex
numbered as 1 by a LexBFS execution, let X1 will be the maximal clique module containing x1,
let S1 = N(X1); if x1 belongs to a matched co-bipartite atom, then X1 = {x1}, S1 consists of
an isolated vertex y and a clique X ′ of size at least 2, x1 belongs to atom (X + Y ), with X =
X ′+{x1}, Y = N(X), for every vertex x in X, d(x) = d(x1); let Y ′ = {y ∈ Y |N(y) ⊂ X+Y },
Y −Y ′ is a clique separator, no vertex of X+Y ′ belongs to more than one atom, and the atoms
of G are the atoms of G− (X + Y ′) plus atom (X + Y ).

Note that if only clique minimal separators are used, the decomposition is unique and optimal
in the sense that each atom obtained is a maximal connected subgraph containing no clique
separator [25]. Y − Y ′ is a clique minimal separator if and only if G(V − (Y − Y ′)) has another
full component besides X + Y ′; if this is not the case, our process will generate an extra clique
atom Y − Y ′, which clearly is not maximal since it is included in atom X + Y .

Now that we have seen how to extract an atom with the help of a vertex numbered 1 by
LexBFS, let us go on with considerations about complexity. We will need our second new result
on LexBFS:

Theorem 3.6. Let G be a graph, α a LexBFS ordering of G, S a clique separator of G, C a
connected component of G(V − S). Then the sub-order β defined by α on V − C is a LexBFS
ordering of G(V − C).

By virtue of Theorem 3.6, when we have defined a clique separator S and the corresponding
connected component C of G(V − S) whose vertices belong to only one atom, we can simply
remove C and use the same LexBFS ordering on the resulting graph.

Another consideration regarding complexity issues is that in order to reach the time bound of
O(n2), we cannot afford to search each subgraph Y of a matched co-bipartite atom as defined
by Lemma 3.5 to check whether it is a clique: we could add an O(n) cost factor since the
same clique could be traversed O(n) times if Y belongs to O(n) different atoms. To solve this
problem, we will use the following structural theorem:

Theorem 3.7. Let G be a multimat graph, and let G′′ be the graph obtained from G by removing
all the matching edges of all the matched co-bipartite atoms of G. Then G′′ is a disjoint union
of cliques.

Proof. Suppose there is a connected component C of G′′ which is not a clique: C must contain
vertices of the cliques of several atoms. There must be in C the cliques of two atoms A and A′

which have a proper intersection of size at least 3, else there is a clique separator of size 1 or 2
in G, which is impossible since G is a multimat graph. Let v be in A− A′, w in A′ − A: v, w,
together with A ∩A′, contain a diamond.

From Theorem 3.7, we can deduce the following inductive definition of a multimat graph:

Characterization 3.8. A graph is a multimat graph if and only if it can be constructed from
the inductive definition:
Basis: Each clique with at least three vertices is a multimat graph, and each matched co-bipartite
graph with at least six vertices is a multimat graph.
Rules: Let G = (VG, EG) be any multimat graph, let K be a clique in G with at least three
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vertices and let R be a new clique with VG ∩R = ∅.
a) If K is a maximal clique, then G′ = (VG∪R,EG∪E(R)∪{xy | x ∈ K, y ∈ R}) is a multimat
graph.
b) If |R| = |K| and D is a perfect matching between R and K then G′ = (VG∪R,EG∪E(R)∪D)
is a multimat graph.

Corollary 3.9. Let Q be the quotient graph obtained from a multimat graph G by contracting
each maximal clique of size at least 3 of G into a vertex: Q is a tree.

Our algorithm for recognizing multimat graphs applies the ’leaf’-elimination scheme associ-
ated with Characterization 3.8 and Corollary 3.9.

ALGORITHM Multimat graph recognition
Input : A graph G whose clique minimal separators are of size at least 3, a

LexBFS ordering α of G.
Question: Is G a multimat graph? If yes, a decomposition of G into set A of atoms.

Initialize: A ← ∅; G′ ← G ; D ← ∅;//D will store the matching edges
while G′ is not empty do

x1 ← α(1); X1 ← maximal clique module containing x1; S1 ← NG′(X1);
if S1 is a clique//(x1 belongs to a clique atom) then

A ← A + {N [x1]}; G′ ← G′ −X1;
if G′ = S1 then G′ ← ∅;

else
//(x1 belongs to a matched co-bipartite atom);
if {(S1 is not an isolated vertex plus a clique) or (X1 6= {x1})} then

Stop with output No;
y1 ← isolated vertex of S1; Y ← {y1}; X ′ ← S1 − {y1}; X ← X ′ + {x1};
Y ′ ← ∅;
foreach xi ∈ X ′ do

if d(xi) 6= d(x1) then Stop with output No;
else

yi ← unique vertex of (N(xi)−X); D ← D + {xiyi}; Y ← Y + {yi};
if d(yi) = |S1| then Y ′ ← Y ′ + {yi};

A ← A + {X + Y }; G′ ← G′ − (X ∪ Y ′);
α← restriction of α to G′;

G′′ ← G−D;
if G′′ is not the union of disjoint cliques then Stop with output No;
Q← quotient graph obtained from G by contracting the cliques of G′′;
if Q is not a tree then Stop with output No;
Return(Yes, A ).

Theorem 3.10. Algorithm Multimat graph recognition correctly recognizes and decomposes a
multimat graph in O(n2) time.

4 Triangulating HD-free graphs in O(n2) time

A triangulation of a non-chordal graph G = (V,E) is a chordal supergraph H = (V,E + F ). A
triangulation H of G is minimal if ∀F ′ ( F , H = (V,E+F ′) fails to be chordal, and a minimal
triangulation is minimum if F is the smallest over all possible minimal triangulations. F is the
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set of fill edges. We will say that we saturate a set X of vertices if we add all edges necessary
to make X a clique.

In this section, we present efficient algorithms for triangulating matched co-bipartite graphs
and chordal bipartite graphs. This leads to the triangulation of HD-free graphs and of HD-free
decomposable graphs.

4.1 Triangulating matched co-bipartite graphs

A co-bipartite graph is AT-free and claw-free, so a minimal triangulation can be computed in
linear time [28]; however, the overlap generated by the large clique separators may cause the
cost to be more than O(nm) time globally, so there may be no gain on the general complexity
for computing a minimal triangulation. Fortunately, a matched co-bipartite graph is easy to
triangulate without searching the graph.

Theorem 4.1. Let G = (X + Y,E) be a matched co-bipartite graph, with X = {x1, x2, . . . , xk}
and Y = {y1, y2, . . . , yk}, |X| = |Y | = k, and with matching edges {x1y1, x2y2, . . . , xkyk}. A
minimal (and minimum) triangulation of G is obtained by adding the following sets of edges:
{x1} × {y2, y3, . . . , yk}, {x2} × {y3, . . . , yk},. . . ,{xi} × {yi+1, . . . , yk},. . . , {xk−1} × {yk}.

Proof. Observe first that every C4 in G is formed from the vertices of two matching edges, so
to break a C4 formed by the vertices xiyi and xjyj it is necessary and sufficient to add one of
the edges xiyj or xjyi. Assume now that graph G′ resulting from these edge additions contains
a C4 {xi, xj , yk, yl}, with i < j and k < l; k, l < i else edge xiyk has been added; but then
edge xiyl does not exist, a contradiction. All added edges are necessary, so the triangulation is
minimal.

As each added edge costs O(1) time to compute, the following results from Theorem 4.1:

Theorem 4.2. A minimal triangulation of a matched co-bipartite graph can be computed in
O(|F |) time, where F is the set of fill edges.

4.2 Triangulating chordal bipartite graphs

We will need a few preliminary results and definitions.

Definition 4.3. [31] Two minimal separators S and T are said to be crossing if T separates a
from b for some non-edge ab of S.

Note that if S and T are two crossing separators, and if some vertex y sees all the vertices
of S, then y must be in T .

Theorem 4.4. [31] For a non-chordal graph G = (V,E), a minimal triangulation is obtained
by saturating a maximal set of pairwise non-crossing minimal separators.

Property 4.5. For a bipartite graph G = (X + Y,E), saturating X yields a triangulation.

Corollary 4.6. For a bipartite graph G = (X + Y,E), there is a minimal triangulation which
is obtained by adding only edges with both endpoints in X.

Property 4.7. For a chordal bipartite graph G = (X + Y,E), the minimal triangulation which
is obtained by adding only edges with both endpoints in X is unique. Moreover, xixj is an added
edge of this minimal triangulation if and only if xi and xj have at least two common neighbors
in G.
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Proof. Let G = (X+Y,E) be a chordal bipartite graph, let S and S′ be two minimal separators
of G which are subsets of X. We claim that S and S′ are non-crossing separators: since G is
a weakly chordal graph, each co-connected component has a confluence point in every full
component of S [5]; since S is a stable set, S is co-connected, so there are two vertices y1 and
y2 which see all the vertices of S; clearly, y1 and y2 are in Y . But any minimal separator which
crosses S must contain both y1 and y2, so this crossing separator cannot be inX. Since a minimal
triangulation needs to saturate a maximal set of pairwise non-crossing minimal separators, we
must use all the minimal separators which are included in X. A pair {xi, xj} of X will belong
to some such a minimal separator iff there are two vertices of Y which see both xi and xj , since
failing to add such an xixj edge would leave a C4 in the resulting graph.

We will use the following remarkable property of chordal bipartite graphs (a Γ is a 2 × 2
submatrix with the unique 0 entry at the lower right-hand corner):

Property 4.8. [26]Let M be the 0− 1 neighborhood matrix of a chordal bipartite graph; there
is a reordering of M which is Γ-free.

Such a reordering can be computed in O(min(mlogn, n2)) time [30],[33]. We will use this
Γ-free matrix M of a chordal bipartite graph G = (X + Y,E) to find all the {xi, xj} pairs of X
which have two common neighbors in Y . In M , let the elements of X be rows and the elements
of Y be columns. We will check each pair {xi, xj} of X; let xi be before xj in M ; let xiyk be the
last non-zero entry on row xi; we will check entry xjyk: if it is 0, then any common neighbor yl
would induce a Γ{xi, xj , yl, yk}, so xi and xj can have no common neighbor in Y ; if entry xjyk
is 1, then there is a common neighbor yk; to check for the presence of a second neighbor, we will
use the next-to-last non-zero entry on row xi, call it yl, and then likewise test entry xiyl. If it is
0, then there is only one common neighbor, if it is 1 then {xi, xj} have two common neighbors
yk and yl. This costs constant time.

Doing this for each pair of vertices of X will cost O(n2) time if M is pre-processed to store
the last and next-to-last entry for each row. The following theorem results:

Theorem 4.9. A minimal triangulation of a chordal bipartite graph can be computed in O(n2)
time.

4.3 Triangulating HD-free graphs and HD-free decomposable graphs

Since clique separator decomposition is hole- and C4- preserving, a minimal triangulation can
be computed separately for each non-clique atom, and the resulting set of added edges over the
whole graph will define a minimal triangulation. The following theorem thus results:

Theorem 4.10. A minimal triangulation of an HD-free graph and of an HD-free decomposable
graph can be computed in O(n2) time.

Proof. From Theorems 4.2 and 4.9, the atoms of an HD-free graph and of an HD-free decompos-
able graph can be computed in O(n2) time. The chordal bipartite atoms have a small overlap,
so no extra cost arises from triangulating these atoms separately. The other non-clique atoms
are matched co-bipartite, and each fill edge can be computed in constant time, so the overall
complexity is in O(n2) time.

5 Conclusion

We have proved that the atoms of HD-free graphs are matched co-bipartite graphs, cliques or
chordal bipartite graphs. We have shown how to recognize a graph of this class, obtain the
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decomposition, and triangulate it in O(n2) time. We have thereby introduced a new class of
graphs, multimat graphs, for which we have uncovered strong structural properties.

Our algorithm for multimat graphs uses a novel approach with LexBFS, illustrating how
there are other classes than chordal graphs in which LexBFS can be

Clique separator decomposition was refined by [25] to a unique decomposition using clique
minimal separators; the atoms obtained are then characterized as the maximal connected sub-
graphs with no clique separator. With an appropriate data structure, we can refine our de-
composition into the unique one, by removing the extra cliques produced when encountering a
matched co-bipartite atom, without losing our O(n2) time bound.

Our algorithm can also easily be adapted to recognizing the superclass of HD-free decom-
posable graphs (the class of graphs whose atoms are HD-free); these graphs are H-free but not
necessarily D-free, as there can be a diamond between two atoms.

A decomposition into HD-free atoms enables us to solve some enumeration problems: we
can enumerate all the C6s, which are found within the matched co-bipartite atoms; we can
also enumerate the minimal separators of the graph: aside from the less than n clique minimal
separators, the other minimal separators (of which there can be an exponential number) are
partitioned into the atoms; minimal separators of a matched co-bipartite graph are easily defined
in constant time per separator, and in a chordal bipartite graph, which is weakly chordal, there
are at most m minimal separators and these can be found in O(m) time each [5]. Globally, this
complexity is better than the current O(nm) time per minimal separator in a general graph [4].
We can also enumerate the maximal cliques, which we can easily find in the multimat subgraphs
as in Theorem 3.7; we can thus also solve the MAXIMUM CLIQUE problem. Another hard
problem which can be solved is that of MINIMUM FILL-IN: all minimal triangulations of a
matched co-bipartite graph are minimum, so a minimum triangulation is easy to find given a
minimum triangulation of each chordal bipartite atom, which is polynomial since the graph is
weakly chordal.
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Appendix: proofs

Theorem. 3.4. The vertex x1 numbered 1 by an execution of LexBFS cannot belong to a clique
minimal separator. Moreover, if X1 is the maximal clique module containing x1, no vertex of
X1 can belong to a clique minimal separator.

Proof. Let x1 be the vertex numbered 1 by some LexBFS execution, and suppose to the contrary
that x1 ∈ S for some clique minimal separator S. Then G(V − S) has at least two connected
components, say C1 and C2 such that x1 sees a vertex y1 ∈ C1 and y2 ∈ C2, respectively. By
Theorem 3.3, x1 belongs to a maximal clique module, X1, whose neighborhood N(X1) is a
minimal separator. Note that y1, y2 /∈ X1 since they are not twins of x1, but y1, y2 ∈ N(X1).
Thus, taking N(X1) as a minimal separator, there is a full component C different from X1 seeing
y1 and y2, and now there is a path between y1 and y2 in G(V −S) (note that S ⊆ X1 ∪N(X1))
contradicting the assumption that S separates y1 and y2.

Lemma 5.1. [2] Let X1 be the maximal clique module containing the vertex numbered 1 by a
LexBFS execution, let S1 = N(X1) be the corresponding minimal separator. If G(V − S1) has
more than two connected components, then LexBFS numbers each component completely before
starting on a new component; let C1 . . . Ck be the connected components of G(V − S1), where
C1 is the component numbered first, let i < j; then all the vertices of Cj are adjacent to all the
vertices of N(Ci).

Lemma. 3.5. Let G be a multimat graph containing at least two atoms, and such that x1
belongs to a matched co-bipartite atom. Then X1 = {x1}, S1 consists of an isolated vertex y
and a clique X ′, x1 belongs to atom (X+Y ), with X = X ′+ {x1}, Y = N(X), for every vertex
x in X, d(x) = d(x1); let Y ′ = {y ∈ Y |N(y) ⊂ X + Y }, Y − Y ′ is a clique separator, no vertex
of X + Y ′ belongs to more than one atom, and the atoms of G are the atoms of G− (X + Y ′)
plus atom (X + Y ).

Figure 1 illustrates this case.

Figure 1: x1 is number 1 LexBFS vertex in a matched co-bipartite atom. X1 = {x1}; S1 =
N(x1) = {y1, x2, x3}; X together with Y = {y1, y2, y3} form the atom.

Proof. We claim that X1 = {x1}: let {a, b} be a non-edge of S1: if x1 and x′1 both belong to
the same clique module, {a, b, x1, x′1} induce a diamond.

By Theorem 3.4, x1 belongs to only one atom, thus x1 sees only the vertices of its own atom,
X + Y , with x1 ∈ X, therefore N(x1) = S1 consists of the rest of X, which is X ′, a clique, and
of the unique vertex y1 of Y which sees x1.

We claim that no vertex of X sees another atom: suppose X ′ sees another atom A′; clearly,
X ′ separates A from A′; but then S1 induces more than two components; let Ci be the component
containing Y − {y1}, let Cj be the component containing A′ − X. N(Ci) ⊂ S, so by Lemma
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5.1, if i < j, all vertices of A′ −X must see y1, which is impossible as X separates A′ from Y
and y1 ∈ Y ; if j < i, y2 must see x3, which is also impossible.

Since X sees no other atom, Y = N(X) and d(x) = d(x1).
Y is a clique separator since we assume that G has at least two atoms. Clearly, the vertices

of Y ′ belong to only one atom, so Y − Y ′ is a clique separator, C = X + Y ′ is a component
of Y − Y ′, and C consists of vertices which belong to only one atom. We can thus apply
Decomposition Step 3.2: decompose the graph into G(V − C) and atom G(C ∪ Y ).

Theorem. 3.6. Let G be a graph, α a LexBFS ordering of G, S a clique separator of G, and D
a connected component of G(V −S). Then the sub-order β defined by α on V −D is a LexBFS
ordering of G(V −D).

Proof. The reader is referred to [32] and [7] for a description of LexBFS. We will use the following
characterization of LexBFS orderings from [7] (see also [12]): α is a LexBFS ordering if and
only if the following 4-point condition holds:

For all a < b < c with ac ∈ E, bc /∈ E there is d > c with bd ∈ E, ad /∈ E. (1)

We also say that vertex d results from a < b < c.

Now suppose that for a connected component D of G(V −S), sub-order β of α on G(V −D)
fails to be a LexBFS ordering of G(V −D); there are vertices a < b < c in β but no d > c fulfills
condition (1) in β; since α is a LexBFS ordering of G, such a d must exist in α by condition
(1).

Thus, d must be in the component D which was removed. Since bd ∈ E, b ∈ S follows;
likewise, since bc /∈ E, c /∈ S. Therefore, in G, c and d lie in two different connected components
C and D of G(V − S), say c ∈ C and d ∈ D.

We claim that then the repeated application of condition (1) leads to infinitely many result-
ing new vertices (which is a contradiction since G is finite):

Since b ∈ S, c ∈ C−S, and d ∈ D−S, and bd ∈ E, we can apply condition (1) to b < c < d;
let e be the resulting vertex; ce ∈ E and be /∈ E. Thus, e /∈ S and thus e ∈ C − S. Moreover,
de /∈ E. Thus, we can apply condition (1) to c < d < e; let f be the resulting vertex and so
on. Now, as long as the new vertices are not in S, the procedure continues until the resulting
vertex, say w, is in S. Then bw ∈ E, and since w resulted from, say u < v < x, uw /∈ E and (1)
can be applied to b < u < w; let the resulting vertex be y. Note that u and v are in different
components u ∈ C and v ∈ D or vice versa. Since by /∈ E, y is in C − S if u ∈ C − S or in
D − S if u ∈ D − S, respectively. Now the process continues with u < v < y since v and y are
in different components until again a resulting vertex is in S but then the same argument as
above can be applied. This shows the theorem.

Characterization. 3.8. A graph is a multimat graph if and only if it can be constructed from
the inductive definition:
Basis: Each clique with at least three vertices is a multimat graph, and each matched co-bipartite
graph with at least six vertices is a multimat graph.
Rules: Let G = (VG, EG) be any multimat graph, let K be a clique in G with at least three
vertices and let R be a new clique with VG ∩R = ∅.
a) If K is a maximal clique, then G′ = (VG∪R,EG∪E(R)∪{xy | x ∈ K, y ∈ R}) is a multimat
graph.
b) If |R| = |K| and D is a perfect matching between R and K then G′ = (VG∪R,EG∪E(R)∪D)
is a multimat graph.
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Proof. Clearly, only multimat graphs are constructed, as well as all multimat graphs with only
one atom. Suppose a multimat graph G cannot be constructed: G has at least two atoms, let
S and C be the clique separator and component containing a number 1 LexBFS vertex which
either define a clique atom, or belong to a matched co-bipartite atom as described by Lemma
3.5:we can remove C, and an induction on the number of atoms leads to a contradiction.

Theorem. 3.10. Algorithm Multimat graph recognition correctly recognizes and decomposes a
multimat graph in O(n2) time.

Proof. If G is a multimat graph, G is decomposed into atoms, by Theorem 2.1 and by Lemma
3.5. At the end, the graph is emptied.

Suppose G is not a multimat graph: either one of its atoms is not a clique or a matched
co-bipartite graph, or there is a diamond between two atoms.

Any matched co-bipartite atom encountered has the correct degree for vertices of X, and if
Y is not a clique, by Theorem 3.7, either the algorithm will fail when finding that G′′ is not a
set of disjoint cliques, or when finding that the quotient graph Q is not a tree. Also by Theorem
3.7, there cannot be a diamond between two atoms since G′′ is a set of disjoint cliques.

LexBFS is run only once and requires linear time. It is easy to determine X1 rapidly at each
step, as the vertices of X1 are numbered consecutively [3].

Computing S1 = N [X1] costs O(m) globally since X1 is removed at the end of the step.
Testing whether S1 is a clique or an isolated vertex plus a clique costs O(m) time, since if x1 is
in a matched co-bipartite atom, all edges of S1 are in X, which is removed at the end of the step;
if x1 is in a clique atom, S1 belongs to a unique other atom which is a matched co-bipartite
atom Z: S1 cannot belong to another clique atom, or this together with X1 and S1 would
induce diamonds; and because of Lemma 5.1, S1 cannot belong to two different matched co-
bipartite atoms. Thus S1 will be traversed exactly once more when Z is processed. Computing
the neighborhoods of the form N(xi) costs O(m) time, as xi ∈ X and X is removed at the
end of the step. Checking G′′ costs O(m) time, since the tested cliques are pairwise disjoint.
Constructing quotient graph Q and checking that it is a tree costs O(m) time.
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